These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11823250)

  • 21. Modulation of NifA activity by PII in Azospirillum brasilense: evidence for a regulatory role of the NifA N-terminal domain.
    Arsene F; Kaminski PA; Elmerich C
    J Bacteriol; 1996 Aug; 178(16):4830-8. PubMed ID: 8759845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional analysis of the GAF domain of NifA in Azospirillum brasilense: effects of Tyr-->Phe mutations on NifA and its interaction with GlnB.
    Chen S; Liu L; Zhou X; Elmerich C; Li JL
    Mol Genet Genomics; 2005 Jun; 273(5):415-22. PubMed ID: 15887032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential roles for the glnB and ntrYX genes in Azospirillum brasilense.
    Vitorino JC; Steffens MB; Machado HB; Yates MG; Souza EM; Pedrosa FO
    FEMS Microbiol Lett; 2001 Jul; 201(2):199-204. PubMed ID: 11470362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of a nifA-like regulatory gene of Azospirillum brasilense Sp7 expressed under conditions of nitrogen fixation and in the presence of air and ammonia.
    Liang YY; Kaminski PA; Elmerich C
    Mol Microbiol; 1991 Nov; 5(11):2735-44. PubMed ID: 1779763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro interactions between the PII proteins and the nitrogenase regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase-activating glycohydrolase (DraG) in Azospirillum brasilense.
    Huergo LF; Merrick M; Monteiro RA; Chubatsu LS; Steffens MB; Pedrosa FO; Souza EM
    J Biol Chem; 2009 Mar; 284(11):6674-82. PubMed ID: 19131333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions between PII proteins and the nitrogenase regulatory enzymes DraT and DraG in Azospirillum brasilense.
    Huergo LF; Chubatsu LS; Souza EM; Pedrosa FO; Steffens MB; Merrick M
    FEBS Lett; 2006 Oct; 580(22):5232-6. PubMed ID: 16963029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of the ADP/ATP ratio, 2-oxoglutarate and divalent ions on Azospirillum brasilense PII protein signalling.
    Gerhardt ECM; Araújo LM; Ribeiro RR; Chubatsu LS; Scarduelli M; Rodrigues TE; Monteiro RA; Pedrosa FO; Souza EM; Huergo LF
    Microbiology (Reading); 2012 Jun; 158(Pt 6):1656-1663. PubMed ID: 22461486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. (Methyl)ammonium transport in the nitrogen-fixing bacterium Azospirillum brasilense.
    Van Dommelen A; Keijers V; Vanderleyden J; de Zamaroczy M
    J Bacteriol; 1998 May; 180(10):2652-9. PubMed ID: 9573149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria.
    Huergo LF; Merrick M; Pedrosa FO; Chubatsu LS; Araujo LM; Souza EM
    Mol Microbiol; 2007 Dec; 66(6):1523-35. PubMed ID: 18028310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase.
    Gerhardt EC; Rodrigues TE; Müller-Santos M; Pedrosa FO; Souza EM; Forchhammer K; Huergo LF
    Mol Microbiol; 2015 Mar; 95(6):1025-35. PubMed ID: 25557370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Poly beta-hydroxybutyrate depolymerase (PhaZ) in Azospirillum brasilense and characterization of a phaZ mutant.
    Kadouri D; Jurkevitch E; Okon Y
    Arch Microbiol; 2003 Nov; 180(5):309-18. PubMed ID: 12898135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An extra-cytoplasmic function sigma factor and anti-sigma factor control carotenoid biosynthesis in Azospirillum brasilense.
    Thirunavukkarasu N; Mishra MN; Spaepen S; Vanderleyden J; Gross CA; Tripathi AK
    Microbiology (Reading); 2008 Jul; 154(Pt 7):2096-2105. PubMed ID: 18599837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of nitrogenase reactivation by the GlnZ protein in Azospirillum brasilense.
    Klassen G; de Souza EM; Yates MG; Rigo LU; Inaba J; Pedrosa Fde O
    J Bacteriol; 2001 Nov; 183(22):6710-3. PubMed ID: 11673445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ADP-ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB-dependent membrane sequestration of DraG.
    Huergo LF; Souza EM; Araujo MS; Pedrosa FO; Chubatsu LS; Steffens MB; Merrick M
    Mol Microbiol; 2006 Jan; 59(1):326-37. PubMed ID: 16359338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum.
    Zhang Y; Pohlmann EL; Roberts GP
    J Bacteriol; 2005 Feb; 187(4):1254-65. PubMed ID: 15687189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pleiotropic physiological effects in the plant growth-promoting bacterium Azospirillum brasilense following chromosomal labeling in the clpX gene.
    Rodriguez H; Mendoza A; Cruz MA; Holguin G; Glick BR; Bashan Y
    FEMS Microbiol Ecol; 2006 Aug; 57(2):217-25. PubMed ID: 16867140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Azospirillum brasilense rpoN gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake, and flagellar biosynthesis.
    Milcamps A; Van Dommelen A; Stigter J; Vanderleyden J; de Bruijn FJ
    Can J Microbiol; 1996 May; 42(5):467-78. PubMed ID: 8640606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen metabolism in Sinorhizobium meliloti-alfalfa symbiosis: dissecting the role of GlnD and PII proteins.
    Yurgel SN; Rice J; Kahn ML
    Mol Plant Microbe Interact; 2012 Mar; 25(3):355-62. PubMed ID: 22074345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Labeled Azospirillum brasilense wild type and excretion-ammonium strains in association with barley roots.
    Santos ARS; Etto RM; Furmam RW; Freitas DL; Santos KFDN; Souza EM; Pedrosa FO; Ayub RA; Steffens MBR; Galvão CW
    Plant Physiol Biochem; 2017 Sep; 118():422-426. PubMed ID: 28711791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly-3-hydroxybutyrate synthesis by different Azospirillum brasilense strains under varying nitrogen deficiency: A comparative in-situ FTIR spectroscopic analysis.
    Tugarova AV; Dyatlova YA; Kenzhegulov OA; Kamnev AA
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119458. PubMed ID: 33601223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.