These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 11823250)
41. Crystal structure of the GlnZ-DraG complex reveals a different form of PII-target interaction. Rajendran C; Gerhardt EC; Bjelic S; Gasperina A; Scarduelli M; Pedrosa FO; Chubatsu LS; Merrick M; Souza EM; Winkler FK; Huergo LF; Li XD Proc Natl Acad Sci U S A; 2011 Nov; 108(47):18972-6. PubMed ID: 22074780 [TBL] [Abstract][Full Text] [Related]
42. Structure and thermodynamics of effector molecule binding to the nitrogen signal transduction PII protein GlnZ from Azospirillum brasilense. Truan D; Bjelić S; Li XD; Winkler FK J Mol Biol; 2014 Jul; 426(15):2783-99. PubMed ID: 24846646 [TBL] [Abstract][Full Text] [Related]
43. Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense. Van Dommelen A; Spaepen S; Vanderleyden J Res Microbiol; 2009 Apr; 160(3):205-12. PubMed ID: 19366628 [TBL] [Abstract][Full Text] [Related]
44. The nitrogenase regulatory enzyme dinitrogenase reductase ADP-ribosyltransferase (DraT) is activated by direct interaction with the signal transduction protein GlnB. Moure VR; Danyal K; Yang ZY; Wendroth S; Müller-Santos M; Pedrosa FO; Scarduelli M; Gerhardt EC; Huergo LF; Souza EM; Seefeldt LC J Bacteriol; 2013 Jan; 195(2):279-86. PubMed ID: 23144248 [TBL] [Abstract][Full Text] [Related]
45. Characterization of three different nitrogen-regulated promoter regions for the expression of glnB and glnA in Azospirillum brasilense. de Zamaroczy M; Delorme F; Elmerich C Mol Gen Genet; 1990 Dec; 224(3):421-30. PubMed ID: 1702507 [TBL] [Abstract][Full Text] [Related]
46. GlnB/GlnK PII proteins and regulation of the Sinorhizobium meliloti Rm1021 nitrogen stress response and symbiotic function. Yurgel SN; Rice J; Mulder M; Kahn ML J Bacteriol; 2010 May; 192(10):2473-81. PubMed ID: 20304991 [TBL] [Abstract][Full Text] [Related]
47. [Cloning sequencing and expression pattern, functional analysis of nifA gene in Azospirillum brasilense Yu62]. Wang J; Chen S; Ma L; Li J Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):655-61. PubMed ID: 12552819 [TBL] [Abstract][Full Text] [Related]
48. Carotenoid production and phenotypic variation in Azospirillum brasilense. Brenholtz GR; Tamir-Ariel D; Okon Y; Burdman S Res Microbiol; 2017 Jun; 168(5):493-501. PubMed ID: 28263905 [TBL] [Abstract][Full Text] [Related]
49. Heat stability of Proteobacterial PII protein facilitate purification using a single chromatography step. Moure VR; Razzera G; Araújo LM; Oliveira MAS; Gerhardt ECM; Müller-Santos M; Almeida F; Pedrosa FO; Valente AP; Souza EM; Huergo LF Protein Expr Purif; 2012 Jan; 81(1):83-88. PubMed ID: 21963770 [TBL] [Abstract][Full Text] [Related]
50. Role of a fasciclin domain protein in photooxidative stress and flocculation in Azospirillum brasilense Sp7. Dubey AP; Pandey P; Mishra S; Gupta P; Tripathi AK Res Microbiol; 2021; 172(6):103875. PubMed ID: 34461275 [TBL] [Abstract][Full Text] [Related]
51. Role of glnB and glnD gene products in regulation of the glnALG operon of Escherichia coli. Bueno R; Pahel G; Magasanik B J Bacteriol; 1985 Nov; 164(2):816-22. PubMed ID: 2865248 [TBL] [Abstract][Full Text] [Related]
52. Adenosine diphosphate ribosylation of dinitrogenase reductase and adenylylation of glutamine synthetase control ammonia excretion in ethylenediamine-resistant mutants of Azospirillum brasilense Sp7. Srivastava A; Tripathi AK Curr Microbiol; 2006 Oct; 53(4):317-23. PubMed ID: 16972125 [TBL] [Abstract][Full Text] [Related]
53. The pivotal regulator GlnB of Escherichia coli is engaged in subtle and context-dependent control. van Heeswijk WC; Molenaar D; Hoving S; Westerhoff HV FEBS J; 2009 Jun; 276(12):3324-40. PubMed ID: 19438718 [TBL] [Abstract][Full Text] [Related]
54. Carotenoid Biosynthetic Pathways Are Regulated by a Network of Multiple Cascades of Alternative Sigma Factors in Azospirillum brasilense Sp7. Rai AK; Dubey AP; Kumar S; Dutta D; Mishra MN; Singh BN; Tripathi AK J Bacteriol; 2016 Nov; 198(21):2955-2964. PubMed ID: 27551017 [TBL] [Abstract][Full Text] [Related]
55. A simple and efficient method for poly-3-hydroxybutyrate quantification in diazotrophic bacteria within 5 minutes using flow cytometry. Alves LP; Almeida AT; Cruz LM; Pedrosa FO; de Souza EM; Chubatsu LS; Müller-Santos M; Valdameri G Braz J Med Biol Res; 2017 Jan; 50(1):e5492. PubMed ID: 28099582 [TBL] [Abstract][Full Text] [Related]
56. The Azospirillum brasilense Sp7 noeJ and noeL genes are involved in extracellular polysaccharide biosynthesis. Lerner A; Castro-Sowinski S; Valverde A; Lerner H; Dror R; Okon Y; Burdman S Microbiology (Reading); 2009 Dec; 155(Pt 12):4058-4068. PubMed ID: 19762447 [TBL] [Abstract][Full Text] [Related]
57. Repressor mutant forms of the Azospirillum brasilense NtrC protein. Huergo LF; Assumpção MC; Souza EM; Steffens MB; Yates MG; Chubatsu LS; Pedrosa FO Appl Environ Microbiol; 2004 Oct; 70(10):6320-3. PubMed ID: 15466584 [TBL] [Abstract][Full Text] [Related]
58. Characterization of the ntrBC genes of Azospirillum brasilense Sp7: their involvement in the regulation of nitrogenase synthesis and activity. Liang YY; Arsène F; Elmerich C Mol Gen Genet; 1993 Aug; 240(2):188-96. PubMed ID: 8355653 [TBL] [Abstract][Full Text] [Related]
59. Control of nifH transcription in Azospirillum brasilense: involvement of NifA and of cis-acting sequences. Fancelli S; Fani R; Grifoni A; Mugnai M; Pastorelli R; Bazzicalupo M FEMS Microbiol Lett; 1994 Jan; 115(1):57-62. PubMed ID: 8125248 [TBL] [Abstract][Full Text] [Related]
60. Responses of Azospirillum brasilense to nitrogen deficiency and to wheat lectin: a diffuse reflectance infrared fourier transform (DRIFT) spectroscopic study. Kamnev AA; Sadovnikova JN; Tarantilis PA; Polissiou MG; Antonyuk LP Microb Ecol; 2008 Nov; 56(4):615-24. PubMed ID: 18437449 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]