BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 1182591)

  • 1. Liver cell plasma membrane lipids and the origin of biliary phospholipid.
    Yousef IM; Bloxam DL; Phillips MJ; Fisher MM
    Can J Biochem; 1975 Sep; 53(9):989-97. PubMed ID: 1182591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lipid composition of plasma membrane subfractions originating from the three major functional domains of the rat hepatocyte cell surface.
    Kremmer T; Wisher MH; Evans WH
    Biochim Biophys Acta; 1976 Dec; 455(3):655-64. PubMed ID: 999933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biliary excretory function is regulated by canalicular membrane fluidity associated with phospholipid fatty acyl chains in the bilayer: implications for the pathophysiology of cholestasis.
    Hyogo H; Tazuma S; Kajiyama G
    J Gastroenterol Hepatol; 2000 Aug; 15(8):887-94. PubMed ID: 11022829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of secretion of biliary lipids. I. Role of bile canalicular and microsomal membranes in the synthesis and transport of biliary lecithin and cholesterol.
    Gregory DH; Vlahcevic ZR; Schatzki P; Swell L
    J Clin Invest; 1975 Jan; 55(1):105-14. PubMed ID: 1109174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of membranes in bile formation. Comparison of the composition of bile and a liver bile-canalicular plasma-membrane subfraction.
    Evans WH; Kremmmer T; Culvenor JG
    Biochem J; 1976 Mar; 154(3):589-95. PubMed ID: 182122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modifying hepatic phospholipid synthesis associates with biliary phospholipid secretion rate in a transporter-independent manner in rats: relation to canalicular membrane fluidity.
    Yasumiba S; Tazuma S; Ochi H; Kajiyama G; Mdt
    Dig Dis Sci; 2001 Jun; 46(6):1290-8. PubMed ID: 11414307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of biliary cholesterol secretion is independent of hepatocyte canalicular membrane lipid composition: a study in the diosgenin-fed rat model.
    Nibbering CP; Groen AK; Ottenhoff R; Brouwers JF; vanBerge-Henegouwen GP; van Erpecum KJ
    J Hepatol; 2001 Aug; 35(2):164-9. PubMed ID: 11580137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liver cell membrane solubilization may control maximum secretory rate of cholic acid in the rat.
    Yousef IM; Barnwell S; Gratton F; Tuchweber B; Weber A; Roy CC
    Am J Physiol; 1987 Jan; 252(1 Pt 1):G84-91. PubMed ID: 3812691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of dietary choline in the beneficial effects of lecithin on the secretion of biliary lipids in rats.
    LeBlanc MJ; Gavino V; Pérea A; Yousef IM; Lévy E; Tuchweber B
    Biochim Biophys Acta; 1998 Aug; 1393(2-3):223-34. PubMed ID: 9748591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taurocholate induces preferential release of phosphatidylcholine from rat liver canalicular vesicles.
    Gerloff T; Meier PJ; Stieger B
    Liver; 1998 Oct; 18(5):306-12. PubMed ID: 9831358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced biliary excretion of canalicular membrane enzymes in ethynylestradiol-induced cholestasis. Effects of ursodeoxycholic acid administration.
    Arrese M; Pizarro M; Solís N; Koenig C; Accatino L
    Biochem Pharmacol; 1995 Oct; 50(8):1223-32. PubMed ID: 7488238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of rat liver cell plasma membranes.
    Fisher MM; Bloxam DL; Oda M; Phillips MJ; Yousef IM
    Proc Soc Exp Biol Med; 1975 Oct; 150(1):177-84. PubMed ID: 1187691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubilization of lipids from hamster bile-canalicular and contiguous membranes and from human erythrocyte membranes by conjugated bile salts.
    Graham JM; Northfield TC
    Biochem J; 1987 Mar; 242(3):825-34. PubMed ID: 3593278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal cortical brush-border and basolateral membranes: cholesterol and phospholipid composition and relative turnover.
    Molitoris BA; Simon FR
    J Membr Biol; 1985; 83(3):207-15. PubMed ID: 3999120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on plasma membranes. XXII. Fatty acid profiles of lipid classes in plasma membranes of rat and mouse livers and hepatomas.
    Van Hoeven RP; Emmelot P; Krol JH; Oomen-Meulemans EP
    Biochim Biophys Acta; 1975 Jan; 380(1):1-11. PubMed ID: 164234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Levels and distributions of phospholipids and cholesterol in the plasma membrane of neuroblastoma cells.
    Charalampous FC
    Biochim Biophys Acta; 1979 Sep; 556(1):38-51. PubMed ID: 476118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrahepatic sources of biliary-like micelles.
    Reuben A; Allen RM
    Biochim Biophys Acta; 1986 Mar; 876(1):1-12. PubMed ID: 3947663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of lipids from liver and hepatoma subcellular membranes.
    Wood R; Upreti GC; deAntueno RJ
    Lipids; 1986 Apr; 21(4):292-300. PubMed ID: 3713448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of a rat liver plasma membrane fraction of probable canalicular origin. Preparative technique, enzymatic profile, composition, and solute transport.
    Scharschmidt BF; Keeffe EB
    Biochim Biophys Acta; 1981 Sep; 646(3):369-81. PubMed ID: 6116503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional alterations of hepatocytes during transient phalloidin-induced cholestasis in the rat.
    Loranger A; Barriault C; Yousef IM; Tuchweber B
    Toxicol Appl Pharmacol; 1996 Mar; 137(1):100-11. PubMed ID: 8607135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.