These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11826080)

  • 21. Kinematics of podokinetic after-rotation: similarities to voluntary turning and potential clinical implications.
    Earhart GM; Hong M
    Brain Res Bull; 2006 Jun; 70(1):15-21. PubMed ID: 16750478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Podokinetic stimulation causes shifts in perception of straight ahead.
    Scott JT; Lohnes CA; Horak FB; Earhart GM
    Exp Brain Res; 2011 Feb; 208(3):313-21. PubMed ID: 21076818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vestibular-Podokinetic interaction without vestibular perception.
    Melvill Jones G; Fletcher WA; Weber KD; Block EW
    Exp Brain Res; 2005 Dec; 167(4):649-53. PubMed ID: 16292636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Podokinetic after-rotation does not depend on sensory conflict.
    Jürgens R; Boss T; Becker W
    Exp Brain Res; 1999 Oct; 128(4):563-7. PubMed ID: 10541753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Postural after-effects of stepping on an inclined surface.
    Kluzik J; Horak FB; Peterka RJ
    Neurosci Lett; 2007 Feb; 413(2):93-8. PubMed ID: 17166666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prolonged optokinetic stimulation generates podokinetic after rotation.
    Gordon CR; Tal D; Gadoth N; Shupak A
    Ann N Y Acad Sci; 2003 Oct; 1004():297-302. PubMed ID: 14662469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Attuning one's steps to visual targets reduces comfortable walking speed in both young and older adults.
    Peper CL; de Dreu MJ; Roerdink M
    Gait Posture; 2015 Mar; 41(3):830-4. PubMed ID: 25800002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Could different directions of infant stepping be controlled by the same locomotor central pattern generator?
    Lamb T; Yang JF
    J Neurophysiol; 2000 May; 83(5):2814-24. PubMed ID: 10805679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reproducibility of distance and direction errors associated with forward, backward, and sideway walking in the context of blind navigation.
    Paquet N; Rainville C; Lajoie Y; Tremblay F
    Perception; 2007; 36(4):525-36. PubMed ID: 17564199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A marching-walking hybrid induces step length adaptation and transfers to natural walking.
    Long AW; Finley JM; Bastian AJ
    J Neurophysiol; 2015 Jun; 113(10):3905-14. PubMed ID: 25867742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptation of the gait initiation process for stepping on to a new level using a single step.
    Gélat T; Brenière Y
    Exp Brain Res; 2000 Aug; 133(4):538-46. PubMed ID: 10985688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for a common process in gait initiation and stepping on to a new level to reach gait velocity.
    Gélat T; Pellec AL; Brenière Y
    Exp Brain Res; 2006 Apr; 170(3):336-44. PubMed ID: 16328272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptive plasticity in the control of locomotor trajectory.
    Gordon CR; Fletcher WA; Melvill Jones G; Block EW
    Exp Brain Res; 1995; 102(3):540-5. PubMed ID: 7737400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial and Temporal Control Contribute to Step Length Asymmetry During Split-Belt Adaptation and Hemiparetic Gait.
    Finley JM; Long A; Bastian AJ; Torres-Oviedo G
    Neurorehabil Neural Repair; 2015 Sep; 29(8):786-95. PubMed ID: 25589580
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2D trajectory estimation during free walking using a tiptoe-mounted inertial sensor.
    Sagawa K; Ohkubo K
    J Biomech; 2015 Jul; 48(10):2054-9. PubMed ID: 25907547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neck muscle fatigue and spatial orientation during stepping in place in humans.
    Schmid M; Schieppati M
    J Appl Physiol (1985); 2005 Jul; 99(1):141-53. PubMed ID: 15489256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking.
    Houldin A; Chua R; Carpenter MG; Lam T
    J Neurophysiol; 2012 Aug; 108(3):943-52. PubMed ID: 22592310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interplay between strategic and adaptive control mechanisms in plastic recalibration of locomotor function.
    Richards JT; Mulavara AP; Bloomberg JJ
    Exp Brain Res; 2007 Apr; 178(3):326-38. PubMed ID: 17061092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping.
    Auyang AG; Yen JT; Chang YH
    Exp Brain Res; 2009 Jan; 192(2):253-64. PubMed ID: 18839158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visual guidance of landing behaviour when stepping down to a new level.
    Buckley JG; MacLellan MJ; Tucker MW; Scally AJ; Bennett SJ
    Exp Brain Res; 2008 Jan; 184(2):223-32. PubMed ID: 17726604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.