BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 11826139)

  • 1. Kinematics and dynamics are not represented independently in motor working memory: evidence from an interference study.
    Tong C; Wolpert DM; Flanagan JR
    J Neurosci; 2002 Feb; 22(3):1108-13. PubMed ID: 11826139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interference between velocity-dependent and position-dependent force-fields indicates that tasks depending on different kinematic parameters compete for motor working memory.
    Bays PM; Flanagan JR; Wolpert DM
    Exp Brain Res; 2005 Jun; 163(3):400-5. PubMed ID: 15856202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task-specific internal models for kinematic transformations.
    Tong C; Flanagan JR
    J Neurophysiol; 2003 Aug; 90(2):578-85. PubMed ID: 12904486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visuomotor rotations of varying size and direction compete for a single internal model in motor working memory.
    Wigmore V; Tong C; Flanagan JR
    J Exp Psychol Hum Percept Perform; 2002 Apr; 28(2):447-57. PubMed ID: 11999865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interference effects of non-rotated versus counter-rotated trials in visuomotor adaptation.
    Hinder MR; Walk L; Woolley DG; Riek S; Carson RG
    Exp Brain Res; 2007 Jul; 180(4):629-40. PubMed ID: 17588186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning and recall of incremental kinematic and dynamic sensorimotor transformations.
    Klassen J; Tong C; Flanagan JR
    Exp Brain Res; 2005 Jul; 164(2):250-9. PubMed ID: 15947919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation to rotated visual feedback: a re-examination of motor interference.
    Miall RC; Jenkinson N; Kulkarni K
    Exp Brain Res; 2004 Jan; 154(2):201-10. PubMed ID: 14608451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visuomotor learning generalizes between bilateral and unilateral conditions despite varying degrees of bilateral interference.
    Wang J; Mordkoff JT; Sainburg RL
    J Neurophysiol; 2010 Dec; 104(6):2913-21. PubMed ID: 20881203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple motor learning strategies in visuomotor rotation.
    Saijo N; Gomi H
    PLoS One; 2010 Feb; 5(2):e9399. PubMed ID: 20195373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms underlying interlimb transfer of visuomotor rotations.
    Wang J; Sainburg RL
    Exp Brain Res; 2003 Apr; 149(4):520-6. PubMed ID: 12677333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing explicit strategies in force field adaptation.
    Schween R; McDougle SD; Hegele M; Taylor JA
    J Neurophysiol; 2020 Apr; 123(4):1552-1565. PubMed ID: 32208878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments.
    Flanagan JR; Nakano E; Imamizu H; Osu R; Yoshioka T; Kawato M
    J Neurosci; 1999 Oct; 19(20):RC34. PubMed ID: 10516336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation to visuomotor transformations: consolidation, interference, and forgetting.
    Krakauer JW; Ghez C; Ghilardi MF
    J Neurosci; 2005 Jan; 25(2):473-8. PubMed ID: 15647491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of task-related continuous auditory feedback during learning of tracking motion exercises.
    Rosati G; Oscari F; Spagnol S; Avanzini F; Masiero S
    J Neuroeng Rehabil; 2012 Oct; 9():79. PubMed ID: 23046683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interlimb transfer of visuomotor rotations: independence of direction and final position information.
    Sainburg RL; Wang J
    Exp Brain Res; 2002 Aug; 145(4):437-47. PubMed ID: 12172655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of visuomotor-map uncertainty on visuomotor adaptation.
    Saijo N; Gomi H
    J Neurophysiol; 2012 Mar; 107(6):1576-85. PubMed ID: 22190631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Context-dependent partitioning of motor learning in bimanual movements.
    Howard IS; Ingram JN; Wolpert DM
    J Neurophysiol; 2010 Oct; 104(4):2082-91. PubMed ID: 20685927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of spatial working memory to visuomotor learning.
    Anguera JA; Reuter-Lorenz PA; Willingham DT; Seidler RD
    J Cogn Neurosci; 2010 Sep; 22(9):1917-30. PubMed ID: 19803691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acquisition and contextual switching of multiple internal models for different viscous force fields.
    Wada Y; Kawabata Y; Kotosaka S; Yamamoto K; Kitazawa S; Kawato M
    Neurosci Res; 2003 Jul; 46(3):319-31. PubMed ID: 12804793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knowledge of performance is insufficient for implicit visuomotor rotation adaptation.
    Peled A; Karniel A
    J Mot Behav; 2012; 44(3):185-94. PubMed ID: 22548697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.