These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 11826139)

  • 41. Visual target separation determines the extent of generalisation between opposing visuomotor rotations.
    Woolley DG; de Rugy A; Carson RG; Riek S
    Exp Brain Res; 2011 Jul; 212(2):213-24. PubMed ID: 21562858
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New visuomotor maps are immediately available to the opposite limb.
    Carroll TJ; Poh E; de Rugy A
    J Neurophysiol; 2014 Jun; 111(11):2232-43. PubMed ID: 24598522
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of haptic guidance in learning a novel visuomotor task.
    van Asseldonk EH; Wessels M; Stienen AH; van der Helm FC; van der Kooij H
    J Physiol Paris; 2009; 103(3-5):276-85. PubMed ID: 19665551
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Generalisation between opposing visuomotor rotations when each is associated with visual targets and movements of different amplitude.
    Woolley DG; Carson RG; Tresilian JR; Riek S
    Brain Res; 2008 Jul; 1219():46-58. PubMed ID: 18541224
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Explicit contextual information selectively contributes to predictive switching of internal models.
    Imamizu H; Sugimoto N; Osu R; Tsutsui K; Sugiyama K; Wada Y; Kawato M
    Exp Brain Res; 2007 Aug; 181(3):395-408. PubMed ID: 17437093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mirror reversal and visual rotation are learned and consolidated via separate mechanisms: recalibrating or learning de novo?
    Telgen S; Parvin D; Diedrichsen J
    J Neurosci; 2014 Oct; 34(41):13768-79. PubMed ID: 25297103
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Insights into the control of arm movement during body motion as revealed by EMG analyses.
    Blouin J; Guillaud E; Bresciani JP; Guerraz M; Simoneau M
    Brain Res; 2010 Jan; 1309():40-52. PubMed ID: 19883633
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of roll visual motion on online control of arm movement: reaching within a dynamic virtual environment.
    Dvorkin AY; Kenyon RV; Keshner EA
    Exp Brain Res; 2009 Feb; 193(1):95-107. PubMed ID: 18936925
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Motor adaptation and generalization of reaching movements using motor primitives based on spatial coordinates.
    Tanaka H; Sejnowski TJ
    J Neurophysiol; 2015 Feb; 113(4):1217-33. PubMed ID: 25429111
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Performing a reaching task with one arm while adapting to a visuomotor rotation with the other can lead to complete transfer of motor learning across the arms.
    Wang J; Lei Y; Binder JR
    J Neurophysiol; 2015 Apr; 113(7):2302-8. PubMed ID: 25632082
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The perils of learning to move while speaking: One-sided interference between speech and visuomotor adaptation.
    Lametti DR; Quek MYM; Prescott CB; Brittain JS; Watkins KE
    Psychon Bull Rev; 2020 Jun; 27(3):544-552. PubMed ID: 32212105
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Forces That Supplement Visuomotor Learning: A "Sensory Crossover" Experiment.
    Bittmann MF; Patton JL
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1109-1116. PubMed ID: 28113982
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Domain-Specific Working Memory, But Not Dopamine-Related Genetic Variability, Shapes Reward-Based Motor Learning.
    Holland P; Codol O; Oxley E; Taylor M; Hamshere E; Joseph S; Huffer L; Galea JM
    J Neurosci; 2019 Nov; 39(47):9383-9396. PubMed ID: 31604835
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparatory activity in motor cortex reflects learning of local visuomotor skills.
    Paz R; Boraud T; Natan C; Bergman H; Vaadia E
    Nat Neurosci; 2003 Aug; 6(8):882-90. PubMed ID: 12872127
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differentiating between two models of motor lateralization.
    Shabbott BA; Sainburg RL
    J Neurophysiol; 2008 Aug; 100(2):565-75. PubMed ID: 18497366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adaptation paths to novel motor tasks are shaped by prior structure learning.
    Kobak D; Mehring C
    J Neurosci; 2012 Jul; 32(29):9898-908. PubMed ID: 22815505
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Flexible explicit but rigid implicit learning in a visuomotor adaptation task.
    Bond KM; Taylor JA
    J Neurophysiol; 2015 Jun; 113(10):3836-49. PubMed ID: 25855690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acquisition and generalization of visuomotor transformations by nonhuman primates.
    Paz R; Nathan C; Boraud T; Bergman H; Vaadia E
    Exp Brain Res; 2005 Feb; 161(2):209-19. PubMed ID: 15480596
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Real-time error detection but not error correction drives automatic visuomotor adaptation.
    Hinder MR; Riek S; Tresilian JR; de Rugy A; Carson RG
    Exp Brain Res; 2010 Mar; 201(2):191-207. PubMed ID: 19830412
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Target size matters: target errors contribute to the generalization of implicit visuomotor learning.
    Reichenthal M; Avraham G; Karniel A; Shmuelof L
    J Neurophysiol; 2016 Aug; 116(2):411-24. PubMed ID: 27121580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.