BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 11826161)

  • 1. Ca2+ transport properties and determinants of anomalous mole fraction effects of single voltage-gated Ca2+ channels in hair cells from bullfrog saccule.
    Rodriguez-Contreras A; Nonner W; Yamoah EN
    J Physiol; 2002 Feb; 538(Pt 3):729-45. PubMed ID: 11826161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permeation in the dihydropyridine-sensitive calcium channel. Multi-ion occupancy but no anomalous mole-fraction effect between Ba2+ and Ca2+.
    Yue DT; Marban E
    J Gen Physiol; 1990 May; 95(5):911-39. PubMed ID: 2163433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of ion permeation pathway in the N-type Ca2+ channel.
    Wakamori M; Strobeck M; Niidome T; Teramoto T; Imoto K; Mori Y
    J Neurophysiol; 1998 Feb; 79(2):622-34. PubMed ID: 9463426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-gated calcium channels: direct observation of the anomalous mole fraction effect at the single-channel level.
    Friel DD; Tsien RW
    Proc Natl Acad Sci U S A; 1989 Jul; 86(13):5207-11. PubMed ID: 2544893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of strontium on the permeation and gating phenotype of calcium channels in hair cells.
    Rodriguez-Contreras A; Lv P; Zhu J; Kim HJ; Yamoah EN
    J Neurophysiol; 2008 Oct; 100(4):2115-24. PubMed ID: 18701758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of permeant ion concentrations on the gating of L-type Ca2+ channels in hair cells.
    Rodríguez-Contreras A; Yamoah EN
    Biophys J; 2003 May; 84(5):3457-69. PubMed ID: 12719271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid substitutions in the pore affect the anomalous mole fraction effect of CaV1.2 channels.
    Li Z; Huang H; Yang B; Jiang H; Gao GF; Peterson BZ; Huang CX
    Mol Med Rep; 2013 Feb; 7(2):571-6. PubMed ID: 23229127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurement of single-channel Ca(2+) currents in bullfrog hair cells reveals two distinct channel subtypes.
    Rodriguez-Contreras A; Yamoah EN
    J Physiol; 2001 Aug; 534(Pt 3):669-89. PubMed ID: 11483699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The selectivity of the hair cell's mechanoelectrical-transduction channel promotes Ca2+ flux at low Ca2+ concentrations.
    Lumpkin EA; Marquis RE; Hudspeth AJ
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10997-1002. PubMed ID: 9380748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permeation and gating properties of the L-type calcium channel in mouse pancreatic beta cells.
    Smith PA; Aschroft FM; Fewtrell CM
    J Gen Physiol; 1993 May; 101(5):767-97. PubMed ID: 7687645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium.
    Allen GJ; Sanders D
    Plant J; 1996 Dec; 10(6):1055-69. PubMed ID: 9011087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore.
    Almers W; McCleskey EW
    J Physiol; 1984 Aug; 353():585-608. PubMed ID: 6090646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion channel regulation of the dynamical instability of the resting membrane potential in saccular hair cells of the green frog (Rana esculenta).
    Jørgensen F; Kroese AB
    Acta Physiol Scand; 2005 Dec; 185(4):271-90. PubMed ID: 16266369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bull-frog, Rana catesbeiana.
    Hudspeth AJ; Lewis RS
    J Physiol; 1988 Jun; 400():237-74. PubMed ID: 2458454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divalent cation conduction in the ryanodine receptor channel of sheep cardiac muscle sarcoplasmic reticulum.
    Tinker A; Williams AJ
    J Gen Physiol; 1992 Sep; 100(3):479-93. PubMed ID: 1279095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monovalent permeability, rectification, and ionic block of store-operated calcium channels in Jurkat T lymphocytes.
    Kerschbaum HH; Cahalan MD
    J Gen Physiol; 1998 Apr; 111(4):521-37. PubMed ID: 9524136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac calcium channels in planar lipid bilayers. L-type channels and calcium-permeable channels open at negative membrane potentials.
    Rosenberg RL; Hess P; Tsien RW
    J Gen Physiol; 1988 Jul; 92(1):27-54. PubMed ID: 2844956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeation and gating in CaV3.1 (alpha1G) T-type calcium channels effects of Ca2+, Ba2+, Mg2+, and Na+.
    Khan N; Gray IP; Obejero-Paz CA; Jones SW
    J Gen Physiol; 2008 Aug; 132(2):223-38. PubMed ID: 18663131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two types of calcium channels in bullfrog saccular hair cells.
    Su ZL; Jiang SC; Gu R; Yang WP
    Hear Res; 1995 Jul; 87(1-2):62-8. PubMed ID: 8567444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-gated Ca2+ channel Ca(V)1.3 subunit expressed in the hair cell epithelium of the sacculus of the trout Oncorhynchus mykiss: cloning and comparison across vertebrate classes.
    Ramakrishnan NA; Green GE; Pasha R; Drescher MJ; Swanson GS; Perin PC; Lakhani RS; Ahsan SF; Hatfield JS; Khan KM; Drescher DG
    Brain Res Mol Brain Res; 2002 Dec; 109(1-2):69-83. PubMed ID: 12531517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.