These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 11826887)

  • 21. [Effect of weightlessness and artificial gravitation on morphological manifestations of the adrenal cortex reaction in rats after space flight on board the biosatellite "Cosmos-936"].
    Savina EA; Alekseev EI; Kuz'mina ZF
    Arkh Anat Gistol Embriol; 1980 Oct; 79(10):25-30. PubMed ID: 7447725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nastic curvatures of wheat coleoptiles that develop in true microgravity.
    Heathcote DG; Chapman DK; Brown AH
    Plant Cell Environ; 1995 Jul; 18(7):818-22. PubMed ID: 11539343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How effectively does a clinostat mimic the ultrastructural effects of microgravity on plant cells?
    Moore R
    Ann Bot; 1990; 65():213-6. PubMed ID: 11537660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of gravity on ontogeny in animals.
    Pitts GC
    Life Sci Space Res; 1973; 11():171-6. PubMed ID: 12001950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graviresponse and its regulation from the aspect of molecular levels in higher plants: growth and development, and auxin polar transport in etiolated pea seedlings under microgravity.
    Miyamoto K; Hoshino T; Hitotsubashi R; Tanimoto E; Ueda J
    Biol Sci Space; 2003 Oct; 17(3):234-5. PubMed ID: 14676393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced root production in Haplopappus gracilis grown under spaceflight conditions.
    Levine HG; Krikorian AD
    J Gravit Physiol; 1996 Apr; 3(1):17-27. PubMed ID: 11539304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An investigation of the suitability of white rats for sub-orbital studies of behavior in a gravity field. NASA CR-1255.
    Broderson AB; Lange KO
    NASA Contract Rep NASA CR; 1968 Nov; ():1-94. PubMed ID: 5305528
    [No Abstract]   [Full Text] [Related]  

  • 28. A spaceflight experiment for the study of gravimorphogenesis and hydrotropism in cucumber seedlings.
    Takahashi H; Mizuno H; Kamada M; Fujii N; Higashitani A; Kamigaichi S; Aizawa S; Mukai C; Shimazu T; Fukui K; Yamashita M
    J Plant Res; 1999 Dec; 112(1108):497-505. PubMed ID: 11543179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The state of gravity sensors and peculiarities of plant growth during different gravitational loads.
    Merkys AJ; Laurinavichius RS; Rupainene OJ; Savichene EK; Jaroshius AV; Shvegzhdene DV; Bendoraityte DP
    Adv Space Res; 1983; 3(9):211-9. PubMed ID: 11542450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium utilization by quail embryos during activities preceding space flight and during embryogenesis in microgravity aboard the orbital space station MIR.
    Orban JI; Piert SJ; Guryeva TS; Hester PY
    J Gravit Physiol; 1999 Oct; 6(2):33-41. PubMed ID: 11543084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Comparative study of the lymphoid organs of rats aboard a space flight under weightless and artificial gravity conditions].
    Durnova GN
    Arkh Anat Gistol Embriol; 1978 Nov; 75(11):41-7. PubMed ID: 736799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanotransduction in root gravity sensing cells.
    Perbal G; Lefranc A; Jeune B; Driss-Ecole D
    Physiol Plant; 2004 Feb; 120(2):303-11. PubMed ID: 14974478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphogenesis of rice and Arabidopsis seedlings in space.
    Hoson T; Soga K; Mori R; Saiki M; Wakabayashi K; Kamisaka S; Kamigaichi S; Aizawa S; Yoshizaki I; Mukai C; Shimazu T; Fukui K; Yamashita M
    J Plant Res; 1999 Dec; 112(1108):477-86. PubMed ID: 11543176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat.
    Shimazu T; Yuda T; Miyamoto K; Yamashita M; Ueda J
    Adv Space Res; 2001; 27(5):995-1000. PubMed ID: 11596646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.
    Levine LH; Heyenga AG; Levine HG; Choi J; Davin LB; Krikorian AD; Lewis NG
    Phytochemistry; 2001 Jul; 57(6):835-46. PubMed ID: 11423135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responses of roots to simulated weightlessness on the fast-rotating clinostat.
    Sobick V; Sievers A
    Life Sci Space Res; 1979; 17():285-90. PubMed ID: 12008717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative effectiveness of a clinostat and a slow-turning lateral vessel at mimicking the ultrastructural effects of microgravity in plant cells.
    Moore R
    Ann Bot; 1990; 66():541-9. PubMed ID: 11537663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Some results of radiobiological studies performed on Cosmos-110 biosatellite.
    Antipov VV; Delone NL; Nikitin MD; Parfyonov GP; Saxonov PP
    Life Sci Space Res; 1969; 7():207-8. PubMed ID: 12197540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biosatellite II mission.
    Reynolds OE
    Life Sci Space Res; 1969; 7():49-61. PubMed ID: 11949687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of statolith mass and grouping in white clover (Trifolium repens) growth in 1-g, microgravity and on the clinostat.
    Smith JD; Todd P; Staehelin LA
    Plant J; 1997 Dec; 12(6):1361-73. PubMed ID: 11536849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.