These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 11826908)
1. Biodegradation of lignocellulosic waste by Aspergillus terreus. Emtiazi G; Naghavi N; Bordbar A Biodegradation; 2001; 12(4):259-63. PubMed ID: 11826908 [TBL] [Abstract][Full Text] [Related]
2. Laccase production by Aspergillus heteromorphus using distillery spent wash and lignocellulosic biomass. Singh A; Bajar S; Bishnoi NR; Singh N J Hazard Mater; 2010 Apr; 176(1-3):1079-82. PubMed ID: 20036461 [TBL] [Abstract][Full Text] [Related]
3. [Biodegradation of Cellulose-Containing Substrates by Micromycetes Followed by Bioconversion into Biogas]. Prokudina LI; Osmolovskii AA; Egorova MA; Malakhova DV; Netrusov AI; Tsavkelova EA Prikl Biokhim Mikrobiol; 2016; 52(2):200-9. PubMed ID: 27266249 [TBL] [Abstract][Full Text] [Related]
4. Efficient enzymatic saccharification of macroalgal biomass using a specific thermostable GH 12 endoglucanase from Aspergillus terreus JL1. Jmel MA; Anders N; Ben Yahmed N; Marzouki MN; Spiess A; Smaali I World J Microbiol Biotechnol; 2019 Dec; 36(1):5. PubMed ID: 31832779 [TBL] [Abstract][Full Text] [Related]
5. Mediterranean agro-industrial wastes as valuable substrates for lignocellulolytic enzymes and protein production by solid-state fermentation. Sousa D; Venâncio A; Belo I; Salgado JM J Sci Food Agric; 2018 Nov; 98(14):5248-5256. PubMed ID: 29652435 [TBL] [Abstract][Full Text] [Related]
6. Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. Gawande PV; Kamat MY J Appl Microbiol; 1999 Oct; 87(4):511-9. PubMed ID: 10583678 [TBL] [Abstract][Full Text] [Related]
7. Optimization of extracellular endoxylanase, endoglucanase and peroxidase production by Streptomyces sp. F2621 isolated in Turkey. Tuncer M; Kuru A; Isikli M; Sahin N; Celenk FG J Appl Microbiol; 2004; 97(4):783-91. PubMed ID: 15357728 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of lignocellulosic wastes for production of edible mushrooms. Rani P; Kalyani N; Prathiba K Appl Biochem Biotechnol; 2008 Dec; 151(2-3):151-9. PubMed ID: 18327544 [TBL] [Abstract][Full Text] [Related]
9. Enhanced alkaline cellulases production by the thermohalophilic Aspergillus terreus AUMC 10138 mutated by physical and chemical mutagens using corn stover as substrate. Isaac GS; Abu-Tahon MA Braz J Microbiol; 2015; 46(4):1269-77. PubMed ID: 26691490 [TBL] [Abstract][Full Text] [Related]
10. Cellulolytic activity of moulds. IV. Evaluation of the utility of cellulosic wastes for biosynthesis of cellulases and xylanase by Aspergillus terreus F-413. Szczodrak J; Rogalski J; Ilczuk Z Acta Microbiol Pol; 1984; 33(3-4):217-25. PubMed ID: 6083706 [TBL] [Abstract][Full Text] [Related]
11. Notable fibrolytic enzyme production by Aspergillus spp. isolates from the gastrointestinal tract of beef cattle fed in lignified pastures. Abrão FO; Duarte ER; Pessoa MS; Santos VLD; Freitas Júnior LF; Barros KO; Hughes AFDS; Silva TD; Rodriguez NM PLoS One; 2017; 12(8):e0183628. PubMed ID: 28850605 [TBL] [Abstract][Full Text] [Related]
12. Cellulase production by Aspergillus niger using urban lignocellulosic waste as substrate: Evaluation of different cultivation strategies. Santos GB; de Sousa Francisco Filho Á; Rêgo da Silva Rodrigues J; Rodrigues de Souza R J Environ Manage; 2022 Mar; 305():114431. PubMed ID: 34995940 [TBL] [Abstract][Full Text] [Related]
13. Importance of cellulase cocktails favoring hydrolysis of cellulose. Victoria J; Odaneth A; Lali A Prep Biochem Biotechnol; 2017 Jul; 47(6):547-553. PubMed ID: 28045600 [TBL] [Abstract][Full Text] [Related]
14. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Gao J; Weng H; Zhu D; Yuan M; Guan F; Xi Y Bioresour Technol; 2008 Nov; 99(16):7623-9. PubMed ID: 18346891 [TBL] [Abstract][Full Text] [Related]
15. Mixed submerged fermentation with two filamentous fungi for cellulolytic and xylanolytic enzyme production. Garcia-Kirchner O; Muñoz-Aguilar M; Pérez-Villalva R; Huitrón-Vargas C Appl Biochem Biotechnol; 2002; 98-100():1105-14. PubMed ID: 12018234 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin. Yang YS; Zhou JT; Lu H; Yuan YL; Zhao LH Biodegradation; 2011 Sep; 22(5):1017-27. PubMed ID: 21350882 [TBL] [Abstract][Full Text] [Related]
17. Newly isolated and characterized bacteria with great application potential for decomposition of lignocellulosic biomass. Maki ML; Idrees A; Leung KT; Qin W J Mol Microbiol Biotechnol; 2012; 22(3):156-66. PubMed ID: 22832891 [TBL] [Abstract][Full Text] [Related]
18. Glycoside hydrolase production by Aspergillus terreus CM20 using mixture design approach for enhanced enzymatic saccharification of alkali pretreated paddy straw. Saritha M; Tiwari R; Singh S; Nain PK; Rana S; Adak A; Arora A; Nain L Indian J Exp Biol; 2016 Aug; 54(8):518-24. PubMed ID: 28577515 [TBL] [Abstract][Full Text] [Related]
19. Study on regulation of growth and biosynthesis of cellulolytic enzymes from newly isolated Aspergillus fumigatus ABK9. Das A; Paul T; Halder SK; Maity C; Das Mohapatra PK; Pati BR; Mondal KC Pol J Microbiol; 2013; 62(1):31-43. PubMed ID: 23829075 [TBL] [Abstract][Full Text] [Related]
20. Integration of biological pre-treatment methods for increased energy recovery from paper and pulp biosludge. Chakraborty D; Shelvapulle S; Reddy KR; Kulkarni RV; Puttaiahgowda YM; Naveen S; Raghu AV J Microbiol Methods; 2019 May; 160():93-100. PubMed ID: 30890400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]