These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11826954)

  • 21. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives.
    Furuya T; Kino K
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1145-54. PubMed ID: 23666444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748(T).
    Rodríguez H; Landete JM; Curiel JA; de Las Rivas B; Mancheño JM; Muñoz R
    J Agric Food Chem; 2008 May; 56(9):3068-72. PubMed ID: 18416556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae.
    Adeboye PT; Bettiga M; Olsson L
    Sci Rep; 2017 Feb; 7():42635. PubMed ID: 28205618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and induction of phenolic acid decarboxylase from Aspergillus luchuensis.
    Maeda M; Tokashiki M; Tokashiki M; Uechi K; Ito S; Taira T
    J Biosci Bioeng; 2018 Aug; 126(2):162-168. PubMed ID: 29519654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Survey of enzyme activity responsible for phenolic off-flavour production by Dekkera and Brettanomyces yeast.
    Harris V; Ford CM; Jiranek V; Grbin PR
    Appl Microbiol Biotechnol; 2009 Jan; 81(6):1117-27. PubMed ID: 18839169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunomodulatory and cellular anti-oxidant activities of caffeic, ferulic, and p-coumaric phenolic acids: a structure-activity relationship study.
    Kilani-Jaziri S; Mokdad-Bzeouich I; Krifa M; Nasr N; Ghedira K; Chekir-Ghedira L
    Drug Chem Toxicol; 2017 Oct; 40(4):416-424. PubMed ID: 27855523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into substrate binding of ferulic acid esterases by arabinose and methyl hydroxycinnamate esters and molecular docking.
    Hunt CJ; Antonopoulou I; Tanksale A; Rova U; Christakopoulos P; Haritos VS
    Sci Rep; 2017 Dec; 7(1):17315. PubMed ID: 29230049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification and properties of a chromosomal beta-lactamase from Klebsiella oxytoca.
    Inoue M; Maejima T; Sanai S; Okamoto R; Hashimoto H
    J Antibiot (Tokyo); 1991 Apr; 44(4):435-40. PubMed ID: 1903375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and properties of pyridoxal-5'-phosphate-dependent histidine decarboxylases from Klebsiella planticola and Enterobacter aerogenes.
    Guirard BM; Snell EE
    J Bacteriol; 1987 Sep; 169(9):3963-8. PubMed ID: 3114230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinctive electrophoretic patterns of esterases from Klebsiella pneumoniae, K. oxytoca, Enterobacter aerogenes and E. gergoviae.
    Goullet P
    J Gen Microbiol; 1980 Apr; 117(2):483-91. PubMed ID: 6999117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and properties of a novel type of malonate decarboxylase from Acinetobacter calcoaceticus.
    Kim YS; Byun HS
    J Biol Chem; 1994 Nov; 269(47):29636-41. PubMed ID: 7961952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induction by sodium of the citrate fermentation enzymes in Klebsiella aerogenes.
    O'Brien
    FEBS Lett; 1975 Apr; 53(1):61-3. PubMed ID: 1140396
    [No Abstract]   [Full Text] [Related]  

  • 33. Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae.
    Bhuiya MW; Lee SG; Jez JM; Yu O
    Appl Environ Microbiol; 2015 Jun; 81(12):4216-23. PubMed ID: 25862228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the catalytic characteristics of phenolic acid decarboxylase from Bacillus amyloliquefaciens by the engineering of N-terminus and C-terminus.
    Li Q; Xia Y; Zhao T; Gong Y; Fang S; Chen M
    BMC Biotechnol; 2021 Jul; 21(1):44. PubMed ID: 34311732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two cinnamate derivatives produce similar alteration in mRNA expression and activity of antioxidant enzymes in rats.
    Lee MK; Park EM; Bok SH; Jung UJ; Kim JY; Park YB; Huh TL; Kwon OS; Choi MS
    J Biochem Mol Toxicol; 2003; 17(5):255-62. PubMed ID: 14595847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Distinctive profiles of esterases from Klebsiella pneumoniae, K. oxytoca, Enterobacter aerogenes and E. gergovia].
    Goullet P
    C R Seances Acad Sci D; 1980 Jan; 290(3):211-4. PubMed ID: 6768459
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical study of the reaction mechanism of phenolic acid decarboxylase.
    Sheng X; Lind ME; Himo F
    FEBS J; 2015 Dec; 282(24):4703-13. PubMed ID: 26408050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional Characterization of a Novel Member of the Amidohydrolase 2 Protein Family, 2-Hydroxy-1-Naphthoic Acid Nonoxidative Decarboxylase from Burkholderia sp. Strain BC1.
    Pal Chowdhury P; Basu S; Dutta A; Dutta TK
    J Bacteriol; 2016 Jun; 198(12):1755-1763. PubMed ID: 27068590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dimerization of ferulic and caffeic acids by purified peroxidase isolated from Bupleurum salicifolium callus culture.
    Luis JC; González FV; Pérez RM; Pérez JA; Frías I
    Prep Biochem Biotechnol; 2005; 35(3):231-41. PubMed ID: 16109635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and some properties of inducible lysine decarboxylase from Vibrio parahaemolyticus.
    Yamamoto S; Imamura T; Kusaba K; Shinoda S
    Chem Pharm Bull (Tokyo); 1991 Nov; 39(11):3067-70. PubMed ID: 1799949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.