BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11827053)

  • 1. In situ MTBE biodegradation supported by diffusive oxygen release.
    Wilson RD; Mackay DM; Scow KM
    Environ Sci Technol; 2002 Jan; 36(2):190-9. PubMed ID: 11827053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotic and abiotic transformations of methyl tertiary butyl ether (MTBE).
    Fischer A; Oehm C; Selle M; Werner P
    Environ Sci Pollut Res Int; 2005 Nov; 12(6):381-6. PubMed ID: 16305145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methyl tert-butyl ether biodegradation by indigenous aquifer microorganisms under natural and artificial oxic conditions.
    Landmeyer JE; Chapelle FH; Herlong HH; Bradley PM
    Environ Sci Technol; 2001 Mar; 35(6):1118-26. PubMed ID: 11347923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation potential of MTBE in a fractured chalk aquifer under aerobic conditions in long-term uncontaminated and contaminated aquifer microcosms.
    Shah NW; Thornton SF; Bottrell SH; Spence MJ
    J Contam Hydrol; 2009 Jan; 103(3-4):119-33. PubMed ID: 19008014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Naturally occurring bacteria similar to the methyl tert-butyl ether (MTBE)-degrading strain PM1 are present in MTBE-contaminated groundwater.
    Hristova K; Gebreyesus B; Mackay D; Scow KM
    Appl Environ Microbiol; 2003 May; 69(5):2616-23. PubMed ID: 12732529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon isotopic fractionation during anaerobic biotransformation of methyl tert-butyl ether and tert-amyl methyl ether.
    Somsamak P; Richnow HH; Häggblom MM
    Environ Sci Technol; 2005 Jan; 39(1):103-9. PubMed ID: 15667082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of compound-specific stable carbon isotope analyses to demonstrate anaerobic biodegradation of MTBE in groundwater at a gasoline release site.
    Kolhatkar R; Kuder T; Philp P; Allen J; Wilson JT
    Environ Sci Technol; 2002 Dec; 36(23):5139-46. PubMed ID: 12523431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of methyl tert-butyl ether and BTEX at varying hydraulic retention times.
    Sedran MA; Pruden A; Wilson GJ; Suidan MT; Venosa AD
    Water Environ Res; 2004; 76(1):47-55. PubMed ID: 15058464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of biostimulation versus bioaugmentation with bacterial strain PM1 for treatment of groundwater contaminated with methyl tertiary butyl ether (MTBE).
    Smith AE; Hristova K; Wood I; Mackay DM; Lory E; Lorenzana D; Scow KM
    Environ Health Perspect; 2005 Mar; 113(3):317-22. PubMed ID: 15743721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced bioremediation of methyl tert-butyl ether (MTBE) by microbial consortia obtained from contaminated aquifer material.
    Volpe A; Del Moro G; Rossetti S; Tandoi V; Lopez A
    Chemosphere; 2009 Apr; 75(2):149-55. PubMed ID: 19178929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of redox conditions on MTBE biodegradation in surface water sediments.
    Bradley PM; Chapelle FH; Landmeyer JE
    Environ Sci Technol; 2001 Dec; 35(23):4643-7. PubMed ID: 11770765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier.
    Liu SJ; Jiang B; Huang GQ; Li XG
    Water Res; 2006 Oct; 40(18):3401-8. PubMed ID: 16962157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic biodegradation of methyl tert-butyl ether by aquifer bacteria from leaking underground storage tank sites.
    Kane SR; Beller HR; Legler TC; Koester CJ; Pinkart HC; Halden RU; Happel AM
    Appl Environ Microbiol; 2001 Dec; 67(12):5824-9. PubMed ID: 11722940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface.
    Schmidt TC; Schirmer M; Weiss H; Haderlein SB
    J Contam Hydrol; 2004 Jun; 70(3-4):173-203. PubMed ID: 15134874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of back diffusion and biodegradation reactions in sustaining an MTBE/TBA plume in alluvial media.
    Rasa E; Chapman SW; Bekins BA; Fogg GE; Scow KM; Mackay DM
    J Contam Hydrol; 2011 Nov; 126(3-4):235-47. PubMed ID: 22115089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE.
    Zwank L; Berg M; Elsner M; Schmidt TC; Schwarzenbach RP; Haderlein SB
    Environ Sci Technol; 2005 Feb; 39(4):1018-29. PubMed ID: 15773473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems.
    Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA).
    Finneran KT; Lovley DR
    Environ Sci Technol; 2001 May; 35(9):1785-90. PubMed ID: 11355193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: microcosm and field evidence.
    Kuder T; Wilson JT; Kaiser P; Kolhatkar R; Philp P; Allen J
    Environ Sci Technol; 2005 Jan; 39(1):213-20. PubMed ID: 15667097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MtBE biodegradation in a gravity flow, high-biomass retaining bioreactor.
    Zein MM; Suidan MT; Venosa AD
    Environ Sci Technol; 2004 Jun; 38(12):3449-56. PubMed ID: 15260347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.