These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11827351)

  • 21. Analysis of the structural diversity of mycolic acids of Rhodococcus and Gordonia [correction of Gordonla] isolates from activated sludge foams by selective ion monitoring gas chromatography-mass spectrometry (SIM GC-MS).
    Stratton HM; Brooks PR; Seviour RJ
    J Microbiol Methods; 1999 Feb; 35(1):53-63. PubMed ID: 10076631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Are filamentous mycolata important in foaming?
    Davenport RJ; Curtis TP
    Water Sci Technol; 2002; 46(1-2):529-33. PubMed ID: 12216682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.
    de los Reyes FL; Ritter W; Raskin L
    Appl Environ Microbiol; 1997 Mar; 63(3):1107-17. PubMed ID: 9055425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of stable foam by the cells and culture supernatant of Gordonia (Nocardia) amarae.
    Iwahori K; Tokutomi T; Miyata N; Fujita M
    J Biosci Bioeng; 2001; 92(1):77-9. PubMed ID: 16233062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fighting foam with phages?
    Thomas JA; Soddell JA; Kurtböke DI
    Water Sci Technol; 2002; 46(1-2):511-8. PubMed ID: 12216679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term analysis of a full-scale activated sludge wastewater treatment system exhibiting seasonal biological foaming.
    Frigon D; Guthrie RM; Bachman GT; Royer J; Bailey B; Raskin L
    Water Res; 2006 Mar; 40(5):990-1008. PubMed ID: 16460780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunomagnetic separation of scum-forming bacteria using polyclonal antibody that recognizes mycolic acids.
    Morisada S; Miyata N; Iwahori K
    J Microbiol Methods; 2002 Oct; 51(2):141-8. PubMed ID: 12133606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell surface hydrophobicity and mycolic acid composition of Rhodococcus strains isolated from activated sludge foam.
    Stratton HM; Brooks PR; Griffiths PC; Seviour RJ
    J Ind Microbiol Biotechnol; 2002 May; 28(5):264-7. PubMed ID: 11986930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nocardia foaming control in activated sludge process treating domestic wastewater.
    Tsang YF; Sin SN; Chua H
    Bioresour Technol; 2008 Jun; 99(9):3381-8. PubMed ID: 17888655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seasonal Changes in Bacterial Communities Cause Foaming in a Wastewater Treatment Plant.
    Wang P; Yu Z; Zhao J; Zhang H
    Microb Ecol; 2016 Apr; 71(3):660-71. PubMed ID: 26577577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome sequences and characterization of the related Gordonia phages GTE5 and GRU1 and their use as potential biocontrol agents.
    Petrovski S; Tillett D; Seviour RJ
    Appl Environ Microbiol; 2012 Jan; 78(1):42-7. PubMed ID: 22038604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid detection of Nocardia amarae in the activated sludge process using enzyme-linked immunosorbent assay (ELISA).
    Iwahori K; Miyata N; Morisada S; Suzuki N
    J Biosci Bioeng; 2000; 89(5):469-73. PubMed ID: 16232779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Locating and Activating Molecular 'Time Bombs': Induction of Mycolata Prophages.
    Dyson ZA; Brown TL; Farrar B; Doyle SR; Tucci J; Seviour RJ; Petrovski S
    PLoS One; 2016; 11(8):e0159957. PubMed ID: 27487243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge.
    Liu M; Gill JJ; Young R; Summer EJ
    Sci Rep; 2015 Sep; 5():13754. PubMed ID: 26349678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of dispersed nocardioform filaments in activated sludge foaming.
    Narayanan B; de Leon C; Radke CJ; Jenkins D
    Water Environ Res; 2010 Jun; 82(6):483-91. PubMed ID: 20572454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of foaming causes in three mesophilic food waste digesters: reactor performance and microbial analysis.
    He Q; Li L; Zhao X; Qu L; Wu D; Peng X
    Sci Rep; 2017 Oct; 7(1):13701. PubMed ID: 29057910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An investigation into studying of the activated sludge foaming potential by using physicochemical parameters.
    Hladikova K; Ruzickova I; Klucova P; Wanner J
    Water Sci Technol; 2002; 46(1-2):525-8. PubMed ID: 12216681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Testing the effect of selectors in the control of bulking and foaming in full scale activated-sludge plants.
    Davoli D; Madoni P; Guglielmi L; Pergetti M; Barilli S
    Water Sci Technol; 2002; 46(1-2):495-8. PubMed ID: 12216675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlating sludge constituents with digester foaming risk using sludge foam potential and rheology.
    Nishiguchi K; Winkler MKH
    Water Sci Technol; 2020 Mar; 81(5):949-960. PubMed ID: 32541113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.