BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11827375)

  • 1. A fluorescent PEBBLE nanosensor for intracellular free zinc.
    Sumner JP; Aylott JW; Monson E; Kopelman R
    Analyst; 2002 Jan; 127(1):11-6. PubMed ID: 11827375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells.
    Park EJ; Brasuel M; Behrend C; Philbert MA; Kopelman R
    Anal Chem; 2003 Aug; 75(15):3784-91. PubMed ID: 14572044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging.
    Xu H; Aylott JW; Kopelman R
    Analyst; 2002 Nov; 127(11):1471-7. PubMed ID: 12475037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding.
    Buck SM; Koo YE; Park E; Xu H; Philbert MA; Brasuel MA; Kopelman R
    Curr Opin Chem Biol; 2004 Oct; 8(5):540-6. PubMed ID: 15450498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma.
    Xu H; Aylott JW; Kopelman R; Miller TJ; Philbert MA
    Anal Chem; 2001 Sep; 73(17):4124-33. PubMed ID: 11569801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors.
    Clark HA; Kopelman R; Tjalkens R; Philbert MA
    Anal Chem; 1999 Nov; 71(21):4837-43. PubMed ID: 10565275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development and in vitro characterisation of an intracellular nanosensor responsive to reactive oxygen species.
    Henderson JR; Fulton DA; McNeil CJ; Manning P
    Biosens Bioelectron; 2009 Aug; 24(12):3608-14. PubMed ID: 19553099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical calcium sensors: development of a generic method for their introduction to the cell using conjugated cell penetrating peptides.
    Webster A; Compton SJ; Aylott JW
    Analyst; 2005 Feb; 130(2):163-70. PubMed ID: 15665969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples.
    Cao Y; Lee Koo YE; Kopelman R
    Analyst; 2004 Aug; 129(8):745-50. PubMed ID: 15284919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous detection of intracellular free calcium and zinc using fura-2FF and FluoZin-3.
    Devinney MJ; Reynolds IJ; Dineley KE
    Cell Calcium; 2005 Mar; 37(3):225-32. PubMed ID: 15670869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc.
    Komatsu K; Urano Y; Kojima H; Nagano T
    J Am Chem Soc; 2007 Nov; 129(44):13447-54. PubMed ID: 17927174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized ratiometric fluorescence nanosensors based on carbon dots and an advanced chemometric model.
    Yan XF; Chen ZP; Huang Y; Kang C; Yu RQ
    Talanta; 2019 Jan; 192():233-240. PubMed ID: 30348383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors.
    Clark HA; Hoyer M; Philbert MA; Kopelman R
    Anal Chem; 1999 Nov; 71(21):4831-6. PubMed ID: 10565274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments.
    Zhang M; Søndergaard RV; Kumar EK; Henriksen JR; Cui D; Hammershøj P; Clausen MH; Andresen TL
    Analyst; 2015 Nov; 140(21):7246-53. PubMed ID: 26393332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer-free optode nanosensors for dynamic, reversible, and ratiometric sodium imaging in the physiological range.
    Ruckh TT; Mehta AA; Dubach JM; Clark HA
    Sci Rep; 2013 Nov; 3():3366. PubMed ID: 24284431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors.
    Koo YE; Cao Y; Kopelman R; Koo SM; Brasuel M; Philbert MA
    Anal Chem; 2004 May; 76(9):2498-505. PubMed ID: 15117189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical nanosensors--an enabling technology for intracellular measurements.
    Aylott JW
    Analyst; 2003 Apr; 128(4):309-12. PubMed ID: 12741632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle PEBBLE sensors in live cells.
    Lee YE; Kopelman R
    Methods Enzymol; 2012; 504():419-70. PubMed ID: 22264547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative generalized ratiometric fluorescence spectroscopy for turbid media based on probe encapsulated by biologically localized embedding.
    Yan XF; Chen ZP; Cui YY; Hu YL; Yu RQ
    Anal Chim Acta; 2016 May; 921():38-45. PubMed ID: 27126788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-photon nano-PEBBLE sensors: subcellular pH measurements.
    Ray A; Koo Lee YE; Epstein T; Kim G; Kopelman R
    Analyst; 2011 Sep; 136(18):3616-22. PubMed ID: 21773602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.