These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 11827550)

  • 21. Photochemical reactions of 13-demethyl visual pigment analogues at low temperatures.
    Shichida Y; Kropf A; Yoshizawa T
    Biochemistry; 1981 Mar; 20(7):1962-8. PubMed ID: 6452903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The molecular origin of the inhibition of transducin activation in rhodopsin lacking the 9-methyl group of the retinal chromophore: a UV-Vis and FTIR spectroscopic study.
    Vogel R; Fan GB; Sheves M; Siebert F
    Biochemistry; 2000 Aug; 39(30):8895-908. PubMed ID: 10913302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH dependence of photolysis intermediates in the photoactivation of rhodopsin mutant E113Q.
    Lewis JW; Szundi I; Fu WY; Sakmar TP; Kliger DS
    Biochemistry; 2000 Jan; 39(3):599-606. PubMed ID: 10642185
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of temperature on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II.
    Thorgeirsson TE; Lewis JW; Wallace-Williams SE; Kliger DS
    Biochemistry; 1993 Dec; 32(50):13861-72. PubMed ID: 8268161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rhodopsin in dimyristoylphosphatidylcholine-reconstituted bilayers forms metarhodopsin II and activates Gt.
    Mitchell DC; Kibelbek J; Litman BJ
    Biochemistry; 1991 Jan; 30(1):37-42. PubMed ID: 1899020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analogue pigment studies of chromophore-protein interactions in metarhodopsins.
    Renk G; Crouch RK
    Biochemistry; 1989 Jan; 28(2):907-12. PubMed ID: 2540811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa; Fesenko EE
    Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural changes in the lumirhodopsin-to-metarhodopsin I conversion of air-dried bovine rhodopsin.
    Nishimura S; Sasaki J; Kandori H; Lugtenburg J; Maeda A
    Biochemistry; 1995 Dec; 34(51):16758-63. PubMed ID: 8527450
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transition dipole orientations in the early photolysis intermediates of rhodopsin.
    Lewis JW; Einterz CM; Hug SJ; Kliger DS
    Biophys J; 1989 Dec; 56(6):1101-11. PubMed ID: 2611326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The photoreaction of vacuum-dried rhodopsin at low temperature: evidence for charge stabilization by water.
    Ganter UM; Schmid ED; Siebert F
    J Photochem Photobiol B; 1988 Dec; 2(4):417-26. PubMed ID: 3149997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of rhodopsin photolysis intermediates in retinal rod disk membranes--I. Temperature dependence of lumirhodopsin and metarhodopsin I kinetics.
    Lewis JW; Winterle JS; Powers MA; Kliger DS; Dratz EA
    Photochem Photobiol; 1981 Sep; 34(3):375-84. PubMed ID: 7280053
    [No Abstract]   [Full Text] [Related]  

  • 32. Specific photoisomerization of retinal in squid rhodopsin and metarhodopsin.
    Suzuki T; Makino M
    Biochim Biophys Acta; 1981 Jun; 636(1):27-31. PubMed ID: 7284342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved.
    Bennett N; Michel-Villaz M; Kühn H
    Eur J Biochem; 1982 Sep; 127(1):97-103. PubMed ID: 6291939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic processes of visual transduction.
    Applebury ML
    Vision Res; 1984; 24(11):1445-54. PubMed ID: 6533979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative studies on the late bleaching processes of four kinds of cone visual pigments and rod visual pigment.
    Sato K; Yamashita T; Imamoto Y; Shichida Y
    Biochemistry; 2012 May; 51(21):4300-8. PubMed ID: 22571736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and function in rhodopsin: the fate of opsin formed upon the decay of light-activated metarhodopsin II in vitro.
    Sakamoto T; Khorana HG
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):249-53. PubMed ID: 7816826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Room temperature trapping of rhodopsin photointermediates.
    Sikora S; Little AS; Dewey TG
    Biochemistry; 1994 Apr; 33(15):4454-9. PubMed ID: 8161500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the primary photointermediates of Drosophila rhodopsin.
    Vought BW; Salcedo E; Chadwell LV; Britt SG; Birge RR; Knox BE
    Biochemistry; 2000 Nov; 39(46):14128-37. PubMed ID: 11087361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational similarities in the beta-ionone ring region of the rhodopsin chromophore in its ground state and after photoactivation to the metarhodopsin-I intermediate.
    Spooner PJ; Sharples JM; Goodall SC; Seedorf H; Verhoeven MA; Lugtenburg J; Bovee-Geurts PH; DeGrip WJ; Watts A
    Biochemistry; 2003 Nov; 42(46):13371-8. PubMed ID: 14621981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resonance Raman spectroscopy of squid and bovine visual pigments: the primary photochemistry in visual transduction.
    Sulkes M; Lewis A; Marcus MA
    Biochemistry; 1978 Oct; 17(22):4712-22. PubMed ID: 728380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.