These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11827719)

  • 41. Kinetics of hydrogen production of methanol reformation using Cu/ZnO/Al2O3 catalyst.
    Wu HS; Chung SC
    J Comb Chem; 2007; 9(6):990-7. PubMed ID: 17900166
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal of ammonia solutions used in catalytic wet oxidation processes.
    Hung CM; Lou JC; Lin CH
    Chemosphere; 2003 Aug; 52(6):989-95. PubMed ID: 12781232
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The kinetics of catalytic incineration of (CH3)2S2 over the CuO-MoO3/gamma-Al2O3 catalyst.
    Wang CH; Lin SS; Weng HS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Oct; 37(9):1649-63. PubMed ID: 12403014
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Catalytic decomposition of gaseous 1,2-dichlorobenzene over CuOx/TiO₂ and CuOx/TiO₂-CNTs catalysts: Mechanism and PCDD/Fs formation.
    Wang QL; Huang QX; Wu HF; Lu SY; Wu HL; Li XD; Yan JH
    Chemosphere; 2016 Feb; 144():2343-50. PubMed ID: 26606189
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FTIR investigation of adsorption and chemical decomposition of CCl4 by high surface-area aluminum oxide.
    Khaleel A; Dellinger B
    Environ Sci Technol; 2002 Apr; 36(7):1620-4. PubMed ID: 11999074
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selective catalytic reduction of nitric oxide with carbon monoxide over alumina-pellet-supported catalysts in the presence of excess oxygen.
    Liu K; Yu Q; Qin Q; Wang C
    Environ Technol; 2018 Aug; 39(15):1878-1885. PubMed ID: 28617174
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetics of reduction of nitrobenzene and carbon tetrachloride at an iron-oxide coated gold electrode.
    Logue BA; Westall JC
    Environ Sci Technol; 2003 Jun; 37(11):2356-62. PubMed ID: 12831017
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor.
    Yang S; Zhu W; Wang J; Chen Z
    J Hazard Mater; 2008 May; 153(3):1248-53. PubMed ID: 17980483
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly efficient degradation of pharmaceutical sludge by catalytic wet oxidation using CuO-CeO2/γ-Al2O3 as a catalyst.
    Zeng X; Liu J; Zhao J
    PLoS One; 2018; 13(10):e0199520. PubMed ID: 30303969
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rotational structure of water in a hydrophobic environment: carbon tetrachloride.
    Kuo M; Kamelamela N; Shultz MJ
    J Phys Chem A; 2008 Feb; 112(6):1214-8. PubMed ID: 18211044
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Properties of Pd, Pt and Ru-Based Catalysts in Catalytic Oxidation of Methanol.
    Jung SC; Nahm SW; Jung HY; Park YK; Seo SG; Kim SC
    J Nanosci Nanotechnol; 2016 Feb; 16(2):2088-91. PubMed ID: 27433735
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The operating performance and products distribution of the catalytic oxidation of methyl-isobutyl-ketone over a Pt/gamma-Al2O3 catalyst.
    Tseng TK; Chu H; Ko TH; Chung LK
    J Hazard Mater; 2005 Jun; 122(1-2):155-60. PubMed ID: 15913889
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon Deposition Onto Ni-Based Catalysts for Combined Steam/CO2 Reforming of Methane.
    Li P; Park YH; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1562-6. PubMed ID: 27433622
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene.
    Lu H; Kong X; Huang H; Zhou Y; Chen Y
    J Environ Sci (China); 2015 Jun; 32():102-7. PubMed ID: 26040736
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of support and second metal in catalytic in-situ generation of hydrogen peroxide by Pd-supported catalysts: application in the removal of organic pollutants by means of the Fenton process.
    Contreras S; Yalfani MS; Medina F; Sueiras JE
    Water Sci Technol; 2011; 63(9):2017-24. PubMed ID: 21902044
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of regenerated ferric oxide for CO destruction and suppressing dioxin formation in flue gas in a pilot-scale incinerator.
    Hung WT; Lin CF
    Chemosphere; 2003 Nov; 53(7):727-35. PubMed ID: 13129512
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sonochemical decomposition of levofloxacin in aqueous solution.
    Guo W; Shi Y; Wang H; Yang H; Zhang G
    Water Environ Res; 2010 Aug; 82(8):696-700. PubMed ID: 20853748
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Understanding reduction of carbon tetrachloride at nickel surfaces.
    Wang J; Blowers P; Farrell J
    Environ Sci Technol; 2004 Mar; 38(5):1576-81. PubMed ID: 15046362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Catalytic dehydrogenation of propane by carbon dioxide: a medium-temperature thermochemical process for carbon dioxide utilisation.
    Du X; Yao B; Gonzalez-Cortes S; Kuznetsov VL; AlMegren H; Xiao T; Edwards PP
    Faraday Discuss; 2015; 183():161-76. PubMed ID: 26392020
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The influence of redox potential on the degradation of halogenated methanes.
    Olivas Y; Dolfing J; Smith GB
    Environ Toxicol Chem; 2002 Mar; 21(3):493-9. PubMed ID: 11878461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.