These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 11828484)

  • 1. Improving Escherichia coli alkaline phosphatase efficacy by additional mutations inside and outside the catalytic pocket.
    Muller BH; Lamoure C; Le Du MH; Cattolico L; Lajeunesse E; Lemaître F; Pearson A; Ducancel F; Ménez A; Boulain JC
    Chembiochem; 2001 Aug; 2(7-8):517-23. PubMed ID: 11828484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase.
    Le Du MH; Lamoure C; Muller BH; Bulgakov OV; Lajeunesse E; Ménez A; Boulain JC
    J Mol Biol; 2002 Mar; 316(4):941-53. PubMed ID: 11884134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-D structure of the D153G mutant of Escherichia coli alkaline phosphatase: an enzyme with weaker magnesium binding and increased catalytic activity.
    Dealwis CG; Chen L; Brennan C; Mandecki W; Abad-Zapatero C
    Protein Eng; 1995 Sep; 8(9):865-71. PubMed ID: 8746724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesium in the active site of Escherichia coli alkaline phosphatase is important for both structural stabilization and catalysis.
    Janeway CM; Xu X; Murphy JE; Chaidaroglou A; Kantrowitz ER
    Biochemistry; 1993 Feb; 32(6):1601-9. PubMed ID: 8431439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.
    O'Brien PJ; Herschlag D
    Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases.
    Murphy JE; Tibbitts TT; Kantrowitz ER
    J Mol Biol; 1995 Nov; 253(4):604-17. PubMed ID: 7473737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase.
    Tibbitts TT; Murphy JE; Kantrowitz ER
    J Mol Biol; 1996 Apr; 257(3):700-15. PubMed ID: 8648634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites.
    Ma L; Kantrowitz ER
    Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ; Murphy JE; Kantrowitz ER
    J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a T81A mutation at the subunit interface on catalytic properties of alkaline phosphatase from Escherichia coli.
    Orhanović S; Bucević-Popović V; Pavela-Vrancic M; Vujaklija D; Gamulin V
    Int J Biol Macromol; 2006 Dec; 40(1):54-8. PubMed ID: 16859742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic analysis of reversible metal binding observed in a mutant (Asp153-->Gly) of Escherichia coli alkaline phosphatase.
    Dealwis CG; Brennan C; Christianson K; Mandecki W; Abad-Zapatero C
    Biochemistry; 1995 Oct; 34(43):13967-73. PubMed ID: 7577993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis.
    Holtz KM; Kantrowitz ER
    FEBS Lett; 1999 Nov; 462(1-2):7-11. PubMed ID: 10580082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity.
    Wojciechowski CL; Cardia JP; Kantrowitz ER
    Protein Sci; 2002 Apr; 11(4):903-11. PubMed ID: 11910033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of rat intestinal alkaline phosphatase--role of crown domain in mammalian alkaline phosphatases.
    Ghosh K; Mazumder Tagore D; Anumula R; Lakshmaiah B; Kumar PP; Singaram S; Matan T; Kallipatti S; Selvam S; Krishnamurthy P; Ramarao M
    J Struct Biol; 2013 Nov; 184(2):182-92. PubMed ID: 24076154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A water-mediated salt link in the catalytic site of Escherichia coli alkaline phosphatase may influence activity.
    Xu X; Kantrowitz ER
    Biochemistry; 1991 Aug; 30(31):7789-96. PubMed ID: 1907846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase.
    Wang J; Stieglitz KA; Kantrowitz ER
    Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of aspartate 101 in the active site of Escherichia coli alkaline phosphatase enhances the catalytic activity.
    Chaidaroglou A; Kantrowitz ER
    Protein Eng; 1989 Nov; 3(2):127-32. PubMed ID: 2687845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of residues outside the active site: structural basis for function of C191 mutants of Escherichia coli aspartate aminotransferase.
    Jeffery CJ; Gloss LM; Petsko GA; Ringe D
    Protein Eng; 2000 Feb; 13(2):105-12. PubMed ID: 10708649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rate-determining step of Escherichia coli alkaline phosphatase altered by the removal of a positive charge at the active center.
    Sun L; Martin DC; Kantrowitz ER
    Biochemistry; 1999 Mar; 38(9):2842-8. PubMed ID: 10052956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural basis for the perturbed pKa of the catalytic base in 4-oxalocrotonate tautomerase: kinetic and structural effects of mutations of Phe-50.
    Czerwinski RM; Harris TK; Massiah MA; Mildvan AS; Whitman CP
    Biochemistry; 2001 Feb; 40(7):1984-95. PubMed ID: 11329265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.