These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 1182897)
21. Involvement of tryptophan residue(s) in the specific binding of agonists/antagonists to 5-HT3 receptors in NG108-15 clonal cells. Miquel MC; Emerit MB; Gozlan H; Hamon M Biochem Pharmacol; 1991 Sep; 42(7):1453-61. PubMed ID: 1930269 [TBL] [Abstract][Full Text] [Related]
22. Selective N-bromosuccinimide oxidation of the nonfluorescent tryptophan-31 in the active center of thioredoxin from Escherichia coli. Holmgren A Biochemistry; 1981 May; 20(11):3204-7. PubMed ID: 7018569 [TBL] [Abstract][Full Text] [Related]
23. [Localization of tryptophan residues in NADPH-adrenodoxin reductase with respect to the NADPH-binding center]. Armenian AG; Gasparian VK; Mardanian SS Biokhimiia; 1987 Jul; 52(7):1087-9. PubMed ID: 3663747 [TBL] [Abstract][Full Text] [Related]
24. Role of tryptophan, histidine and methionine residues in the catalytic activity of mitochondrial aspartate aminotransferase from beef kidney. Polidoro G; di Cola D; di Ilio C; del Boccio G; Politi L; Scandurra R Physiol Chem Phys; 1975; 7(3):255-61. PubMed ID: 1187815 [TBL] [Abstract][Full Text] [Related]
25. A kinetic and fluorimetric investigation of papain modified at tryptophan-69 and -177 by N-bromosuccinimide. Lowe G; Whitworth AS Biochem J; 1974 Aug; 141(2):503-15. PubMed ID: 4455219 [TBL] [Abstract][Full Text] [Related]
26. Effect of modification on physico-chemical and biological properties of haptoglobin. Reaction with N-bromusuccinimide and 2-hydroxy-5-nitrobenzyl bromide. Kaţnik I; Dobryszycka W Acta Biochim Pol; 1978; 25(4):325-32. PubMed ID: 108884 [TBL] [Abstract][Full Text] [Related]
27. Leader peptidase from Escherichia coli: overexpression, characterization, and inactivation by modification of tryptophan residues 300 and 310 with N-bromosuccinimide. Kim YT; Muramatsu T; Takahashi K J Biochem; 1995 Mar; 117(3):535-44. PubMed ID: 7629019 [TBL] [Abstract][Full Text] [Related]
28. Tryptophan residues of saccharifying alpha-amylase from Bacillus subtilis. A kinetic discrimination of states of tryptophan residues using N-bromosuccinimide. Fujimori H; Ohnishi M; Hiromi K J Biochem; 1978 May; 83(5):1503-10. PubMed ID: 96111 [TBL] [Abstract][Full Text] [Related]
29. [Chemical modification of tryptophan residues of leucyl tRNA synthetase by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide]. Korneliuk AI; Shilin VV; Gudzera OI; Rozhko OT; Matsuka GKh Bioorg Khim; 1985 May; 11(5):605-12. PubMed ID: 3929794 [TBL] [Abstract][Full Text] [Related]
30. Family A cellulases: two essential tryptophan residues in endoglucanase III from Trichoderma reesei. Macarrón R; Henrissat B; Claeyssens M Biochim Biophys Acta; 1995 Oct; 1245(2):187-90. PubMed ID: 7492576 [TBL] [Abstract][Full Text] [Related]
31. Effect of hydroxynitrobenzylation of tryptophan-177 on reactivity of active site cysteine-25 in papain. Evans BL; Knopp JA; Horton HR Arch Biochem Biophys; 1981 Feb; 206(2):362-71. PubMed ID: 7224644 [No Abstract] [Full Text] [Related]
32. Chemical modification of dipeptidyl peptidase iv: involvement of an essential tryptophan residue at the substrate binding site. Harada M; Hiraoka BY; Fukasawa KM; Fukasawa K Arch Biochem Biophys; 1984 Nov; 234(2):622-8. PubMed ID: 6149728 [TBL] [Abstract][Full Text] [Related]
33. Inactivation of cytosolic aspartate aminotransferase accompanying modification of Trp 48 by N-bromosuccinimide. Nagashima F; Tanase S; Morino Y FEBS Lett; 1986 Mar; 197(1-2):129-33. PubMed ID: 3949009 [TBL] [Abstract][Full Text] [Related]
34. Covalent modification and site-directed mutagenesis of an active site tryptophan of human prostatic acid phosphatase. Zhang Z; Ostanin K; Van Etten RL Acta Biochim Pol; 1997; 44(4):659-72. PubMed ID: 9584846 [TBL] [Abstract][Full Text] [Related]
35. Structure-function relationships in heparin cofactor II: chemical modification of arginine and tryptophan and demonstration of a two-domain structure. Church FC; Villanueva GB; Griffith MJ Arch Biochem Biophys; 1986 Apr; 246(1):175-84. PubMed ID: 3754413 [TBL] [Abstract][Full Text] [Related]
36. Modification of papain with tetranitromethane. Tsukamoto S; Ohno M J Biochem; 1978 Dec; 84(6):1625-32. PubMed ID: 739010 [TBL] [Abstract][Full Text] [Related]
37. [Changes in biological properties of botulinum neurotoxin a induced by chemical modification of its molecule by tryptophan and tyrosine]. Shibaeva IV; Kolesnikova VA; Ivanov KK Biokhimiia; 1981 May; 46(5):825-31. PubMed ID: 6794652 [TBL] [Abstract][Full Text] [Related]
38. Nitrogen isotope effects on the papain-catalyzed hydrolysis of N-benzoyl-L-argininamide. O'Leary MH; Urberg M; Young AP Biochemistry; 1974 May; 13(10):2077-81. PubMed ID: 4207908 [No Abstract] [Full Text] [Related]
39. Evidence by chemical modification for the involvement of one or more tryptophanyl residues of bovine antithrombin in the binding of high-affinity heparin. Björk I; Nordling K Eur J Biochem; 1979 Dec; 102(2):497-502. PubMed ID: 527591 [TBL] [Abstract][Full Text] [Related]
40. Modification of a single tryptophan of the inorganic pyrophosphatase from thermophilic bacterium PS-3: possible involvement in its substrate binding. Kaneko S; Ichiba T; Hirano N; Hachimori A Biochim Biophys Acta; 1991 Apr; 1077(3):281-4. PubMed ID: 1851440 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]