These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The effects of Na-Ca exchange on membrane currents in sheep cardiac Purkinje fibers. Lederer WJ; Sheu SS; Vaughan-Jones RD; Eisner DA Soc Gen Physiol Ser; 1984; 38():373-80. PubMed ID: 6695211 [No Abstract] [Full Text] [Related]
4. Linear analysis of membrane conductance and capacitance in cardiac Purkinje fibres. Hellam DC; Studt JW J Physiol; 1974 Dec; 243(3):661-94. PubMed ID: 4449077 [TBL] [Abstract][Full Text] [Related]
5. Three-micro-electrode voltage clamp experiments in calf cardiac Purkinje fibres: is slow inward current adequately measured? Kass RS; Siegelbaum SA; Tsien RW J Physiol; 1979 May; 290(2):201-25. PubMed ID: 469751 [TBL] [Abstract][Full Text] [Related]
6. Increased spread of electrotonic potentials during diastolic depolarization in cardiac muscle. De Mello WC J Mol Cell Cardiol; 1986 Jan; 18(1):23-9. PubMed ID: 3950969 [TBL] [Abstract][Full Text] [Related]
7. Computed membrane currents in cardiac Purkinje fibers during voltage clamps. McAllister RE Biophys J; 1969 Apr; 9(4):571-85. PubMed ID: 5778186 [TBL] [Abstract][Full Text] [Related]
8. Does voltage affect excitation-contraction coupling in the heart? Cannell MB; Berlin JR; Lederer WJ Science; 1989 Dec; 246(4937):1640. PubMed ID: 2627235 [No Abstract] [Full Text] [Related]
9. Voltage clamp analysis of the effects of dopamine on the transmembrane ionic currents underlying the action potential of sheep cardiac Purkinje fibers. Gelles JM; Aronson RS Circ Res; 1977 Jun; 40(6):561-6. PubMed ID: 870236 [TBL] [Abstract][Full Text] [Related]
10. Phosphatase inhibition by calyculin A increases i(f) in canine Purkinje fibers and myocytes. Yu H; Chang F; Cohen IS Pflugers Arch; 1993 Mar; 422(6):614-6. PubMed ID: 8385773 [TBL] [Abstract][Full Text] [Related]
11. Nonstationary fluctuation analysis of the delayed rectifier K channel in cardiac Purkinje fibers. Actions of norepinephrine on single-channel current. Bennett PB; Kass R; Begenisich T Biophys J; 1989 Apr; 55(4):731-8. PubMed ID: 2720070 [TBL] [Abstract][Full Text] [Related]
12. Slow inward current and contraction of sheep cardiac Purkinje fibers. Gibbons WR; Fozzard HA J Gen Physiol; 1975 Mar; 65(3):367-84. PubMed ID: 1117286 [TBL] [Abstract][Full Text] [Related]
13. Automaticity in cardiac cells. Katzung BG Life Sci; 1978 Oct; 23(13):1309-15. PubMed ID: 364225 [No Abstract] [Full Text] [Related]
14. Electrophysiological effects of monensin, a sodium ionophore, on cardiac Purkinje fibers. Tsuchida K; Otomo S Eur J Pharmacol; 1990 Nov; 190(3):313-20. PubMed ID: 2272369 [TBL] [Abstract][Full Text] [Related]
15. Time-dependent changes in kinetics of Na+ current in single canine cardiac Purkinje cells. Hanck DA; Sheets MF Am J Physiol; 1992 Apr; 262(4 Pt 2):H1197-207. PubMed ID: 1314510 [TBL] [Abstract][Full Text] [Related]
16. Heart: excitation and contraction. Johnson EA; Lieberman M Annu Rev Physiol; 1971; 33():479-532. PubMed ID: 4951054 [No Abstract] [Full Text] [Related]
18. Patch-clamp analysis in canine cardiac Purkinje cells of a novel sodium component in the pacemaker range. Rota M; Vassalle M J Physiol; 2003 Apr; 548(Pt 1):147-65. PubMed ID: 12588904 [TBL] [Abstract][Full Text] [Related]
19. Calcium- and voltage-activated plateau currents of cardiac Purkinje fibers. Kenyon JL; Sutko JL J Gen Physiol; 1987 Jun; 89(6):921-58. PubMed ID: 3612087 [TBL] [Abstract][Full Text] [Related]
20. Single cardiac Purkinje cells: general electrophysiology and voltage-clamp analysis of the pace-maker current. Callewaert G; Carmeliet E; Vereecke J J Physiol; 1984 Apr; 349():643-61. PubMed ID: 6737305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]