These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 11829345)
1. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury. von Euler M; Janson AM; Larsen JO; Seiger A; Forno L; Bunge MB; Sundström E J Neuropathol Exp Neurol; 2002 Jan; 61(1):64-75. PubMed ID: 11829345 [TBL] [Abstract][Full Text] [Related]
2. Primary demyelination and regeneration of ascending axons in the dorsal funiculus of the rat spinal cord following photochemically induced injury. Olby NJ; Blakemore WF J Neurocytol; 1996 Aug; 25(8):465-80. PubMed ID: 8899568 [TBL] [Abstract][Full Text] [Related]
3. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. Ramer LM; Au E; Richter MW; Liu J; Tetzlaff W; Roskams AJ J Comp Neurol; 2004 May; 473(1):1-15. PubMed ID: 15067714 [TBL] [Abstract][Full Text] [Related]
4. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. Pinzon A; Calancie B; Oudega M; Noga BR J Neurosci Res; 2001 Jun; 64(5):533-41. PubMed ID: 11391708 [TBL] [Abstract][Full Text] [Related]
5. Support of axonal regrowth by endogenous mechanisms following spinal cord injury in adult rats. West NR; Leblanc V; Collins GH Neuropathology; 2001 Sep; 21(3):188-202. PubMed ID: 11666016 [TBL] [Abstract][Full Text] [Related]
6. Quantitative study of neurofilament-positive fiber length in rat spinal cord lesions using isotropic virtual planes. von Euler M; Larsen JO; Janson AM J Comp Neurol; 1998 Nov; 400(4):441-8. PubMed ID: 9786407 [TBL] [Abstract][Full Text] [Related]
7. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Tsai EC; Dalton PD; Shoichet MS; Tator CH Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035 [TBL] [Abstract][Full Text] [Related]
8. B-50 (GAP-43) immunoreactivity is rarely detected within intact catecholaminergic and serotonergic axons innervating the brain and spinal cord of the adult rat, but is associated with these axons following lesion. Alonso G; Ridet JL; Oestreicher AB; Gispen WH; Privat A Exp Neurol; 1995 Jul; 134(1):35-48. PubMed ID: 7545587 [TBL] [Abstract][Full Text] [Related]
9. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Liu S; Sandner B; Schackel T; Nicholson L; Chtarto A; Tenenbaum L; Puttagunta R; Müller R; Weidner N; Blesch A Acta Biomater; 2017 Sep; 60():167-180. PubMed ID: 28735026 [TBL] [Abstract][Full Text] [Related]
10. Endogenous repair after spinal cord contusion injuries in the rat. Beattie MS; Bresnahan JC; Komon J; Tovar CA; Van Meter M; Anderson DK; Faden AI; Hsu CY; Noble LJ; Salzman S; Young W Exp Neurol; 1997 Dec; 148(2):453-63. PubMed ID: 9417825 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model. Bonnici B; Kapfhammer JP Eur J Neurosci; 2008 May; 27(10):2483-92. PubMed ID: 18513321 [TBL] [Abstract][Full Text] [Related]
12. Spinal cord reconstruction using NeuroGel implants and functional recovery after chronic injury. Woerly S; Doan VD; Evans-Martin F; Paramore CG; Peduzzi JD J Neurosci Res; 2001 Dec; 66(6):1187-97. PubMed ID: 11746452 [TBL] [Abstract][Full Text] [Related]
13. Ascending sensory, but not other long-tract axons, regenerate into the connective tissue matrix that forms at the site of a spinal cord injury in mice. Inman DM; Steward O J Comp Neurol; 2003 Aug; 462(4):431-49. PubMed ID: 12811811 [TBL] [Abstract][Full Text] [Related]
14. Emergence of highly neurofilament-immunoreactive zipper-like axon segments at the transection site in scalpel-cordotomized adult rats. Nishio T; Kawaguchi S; Fujiwara H Neuroscience; 2008 Jul; 155(1):90-103. PubMed ID: 18571867 [TBL] [Abstract][Full Text] [Related]
15. Enhanced axonal regeneration following combined demyelination plus schwann cell transplantation therapy in the injured adult spinal cord. Keirstead HS; Morgan SV; Wilby MJ; Fawcett JW Exp Neurol; 1999 Sep; 159(1):225-36. PubMed ID: 10486190 [TBL] [Abstract][Full Text] [Related]
16. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury. Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203 [TBL] [Abstract][Full Text] [Related]
17. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Bregman BS; McAtee M; Dai HN; Kuhn PL Exp Neurol; 1997 Dec; 148(2):475-94. PubMed ID: 9417827 [TBL] [Abstract][Full Text] [Related]
18. The expression of nerve growth factor receptor on Schwann cells and the effect of these cells on the regeneration of axons in traumatically injured human spinal cord. Wang ZH; Walter GF; Gerhard L Acta Neuropathol; 1996; 91(2):180-4. PubMed ID: 8787152 [TBL] [Abstract][Full Text] [Related]
19. Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury. Yang EZ; Zhang GW; Xu JG; Chen S; Wang H; Cao LL; Liang B; Lian XF Acta Pharmacol Sin; 2017 May; 38(5):623-637. PubMed ID: 28392569 [TBL] [Abstract][Full Text] [Related]
20. Live imaging of regenerating lamprey spinal axons. Zhang G; Jin LQ; Sul JY; Haydon PG; Selzer ME Neurorehabil Neural Repair; 2005 Mar; 19(1):46-57. PubMed ID: 15673843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]