These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 11829440)
1. Effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour. Ku CH; Pioletti DP; Browne M; Gregson PJ Biomaterials; 2002 Mar; 23(6):1447-54. PubMed ID: 11829440 [TBL] [Abstract][Full Text] [Related]
2. Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Bordji K; Jouzeau JY; Mainard D; Payan E; Netter P; Rie KT; Stucky T; Hage-Ali M Biomaterials; 1996 May; 17(9):929-40. PubMed ID: 8718939 [TBL] [Abstract][Full Text] [Related]
4. Reduced toxicity and superior cellular response of preosteoblasts to Ti-6Al-7Nb alloy and comparison with Ti-6Al-4V. Challa VS; Mali S; Misra RD J Biomed Mater Res A; 2013 Jul; 101(7):2083-9. PubMed ID: 23349101 [TBL] [Abstract][Full Text] [Related]
5. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture. Shapira L; Klinger A; Tadir A; Wilensky A; Halabi A Clin Oral Implants Res; 2009 Jun; 20(6):578-82. PubMed ID: 19530314 [TBL] [Abstract][Full Text] [Related]
6. Osteogenic potential of bone marrow stromal cells on smooth, roughened, and tricalcium phosphate-modified titanium alloy surfaces. Colombo JS; Carley A; Fleming GJ; Crean SJ; Sloan AJ; Waddington RJ Int J Oral Maxillofac Implants; 2012; 27(5):1029-42. PubMed ID: 23057015 [TBL] [Abstract][Full Text] [Related]
7. Examination of osteoblast-orthopaedic biomaterial interactions using molecular techniques. Puleo DA; Preston KE; Shaffer JB; Bizios R Biomaterials; 1993; 14(2):111-4. PubMed ID: 8382089 [TBL] [Abstract][Full Text] [Related]
8. Phagocytosis of wear debris by osteoblasts affects differentiation and local factor production in a manner dependent on particle composition. Lohmann CH; Schwartz Z; Köster G; Jahn U; Buchhorn GH; MacDougall MJ; Casasola D; Liu Y; Sylvia VL; Dean DD; Boyan BD Biomaterials; 2000 Mar; 21(6):551-61. PubMed ID: 10701456 [TBL] [Abstract][Full Text] [Related]
9. Nitric acid passivation does not affect in vitro biocompatibility of titanium. Faria AC; Beloti MM; Rosa AL Int J Oral Maxillofac Implants; 2003; 18(6):820-5. PubMed ID: 14696657 [TBL] [Abstract][Full Text] [Related]
10. Titanium alloys: in vitro biological analyzes on biofilm formation, biocompatibility, cell differentiation to induce bone formation, and immunological response. Mello DCR; de Oliveira JR; Cairo CAA; Ramos LSB; Vegian MRDC; de Vasconcellos LGO; de Oliveira FE; de Oliveira LD; de Vasconcellos LMR J Mater Sci Mater Med; 2019 Sep; 30(9):108. PubMed ID: 31535222 [TBL] [Abstract][Full Text] [Related]
11. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. do Prado RF; Esteves GC; Santos ELS; Bueno DAG; Cairo CAA; Vasconcellos LGO; Sagnori RS; Tessarin FBP; Oliveira FE; Oliveira LD; Villaça-Carvalho MFL; Henriques VAR; Carvalho YR; De Vasconcellos LMR PLoS One; 2018; 13(5):e0196169. PubMed ID: 29771925 [TBL] [Abstract][Full Text] [Related]
12. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium. Park JW; Kim HK; Kim YJ; Jang JH; Song H; Hanawa T Acta Biomater; 2010 Jul; 6(7):2843-51. PubMed ID: 20085830 [TBL] [Abstract][Full Text] [Related]
13. The effect of alkali- and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells. Nishio K; Neo M; Akiyama H; Nishiguchi S; Kim HM; Kokubo T; Nakamura T J Biomed Mater Res; 2000 Dec; 52(4):652-61. PubMed ID: 11033547 [TBL] [Abstract][Full Text] [Related]
14. The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells. Filova E; Fojt J; Kryslova M; Moravec H; Joska L; Bacakova L Int J Nanomedicine; 2015; 10():7145-63. PubMed ID: 26648719 [TBL] [Abstract][Full Text] [Related]
15. Biomineralisation with Saos-2 bone cells on TiSiN sputtered Ti alloys. V V AT; Bendavid A; Martin PJ; Vaithilingam V; Bean PA; Evans MDM; Subramanian B Colloids Surf B Biointerfaces; 2017 Jul; 155():1-10. PubMed ID: 28384526 [TBL] [Abstract][Full Text] [Related]
16. H2O2/HCl and heat-treated Ti-6Al-4V stimulates pre-osteoblast proliferation and differentiation. Shi GS; Ren LF; Wang LZ; Lin HS; Wang SB; Tong YQ Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2009 Sep; 108(3):368-75. PubMed ID: 19716504 [TBL] [Abstract][Full Text] [Related]
17. Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts. Ponader S; Vairaktaris E; Heinl P; Wilmowsky CV; Rottmair A; Körner C; Singer RF; Holst S; Schlegel KA; Neukam FW; Nkenke E J Biomed Mater Res A; 2008 Mar; 84(4):1111-9. PubMed ID: 17685409 [TBL] [Abstract][Full Text] [Related]
18. Ti-6Al-7Nb promotes cell spreading and fibronectin and osteopontin synthesis in osteoblast-like cells. Osathanon T; Bespinyowong K; Arksornnukit M; Takahashi H; Pavasant P J Mater Sci Mater Med; 2006 Jul; 17(7):619-25. PubMed ID: 16770546 [TBL] [Abstract][Full Text] [Related]
19. In vitro study on cytocompatibility and osteogenesis ability of Ti-Cu alloy. Liu R; Ma Z; Kunle Kolawole S; Zeng L; Zhao Y; Ren L; Yang K J Mater Sci Mater Med; 2019 Jun; 30(7):75. PubMed ID: 31218519 [TBL] [Abstract][Full Text] [Related]
20. In situ surface electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with osteoblast-like cells. Huang HH Biochem Biophys Res Commun; 2004 Feb; 314(3):787-92. PubMed ID: 14741704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]