These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 11829626)
1. Barley viability during storage: use of magnetic resonance as a potential tool to study viability loss. Gruwel ML; Yin XS; Edney MJ; Schroeder SW; MacGregor AW; Abrams S J Agric Food Chem; 2002 Feb; 50(4):667-76. PubMed ID: 11829626 [TBL] [Abstract][Full Text] [Related]
2. Water mobility in the endosperm of high beta-glucan barley mutants as studied by nuclear magnetic resonance imaging. Fast Seefeldt H; van den Berg F; Köckenberger W; Engelsen SB; Wollenweber B Magn Reson Imaging; 2007 Apr; 25(3):425-32. PubMed ID: 17371735 [TBL] [Abstract][Full Text] [Related]
3. Non-invasive exploration of malting barley (Hordeum vulgare) in vitro germination and varietal effects using short wave infrared spectral imaging and ANOVA simultaneous component analysis. Orth SH; Marini F; Fox GP; Manley M; Hayward S Spectrochim Acta A Mol Biomol Spectrosc; 2024 Dec; 323():124869. PubMed ID: 39079339 [TBL] [Abstract][Full Text] [Related]
4. Biochemical heterogeneity of malt is caused by both biological variation and differences in processing: I. Individual grain analyses of biochemical parameters in differently steeped barley (Hordeum vulgare L.) malts. Kleinwächter M; Müller C; Methner FJ; Selmar D Food Chem; 2014 Mar; 147():25-33. PubMed ID: 24206681 [TBL] [Abstract][Full Text] [Related]
5. Spatio-temporal appearance of α-amylase and limit dextrinase in barley aleurone layer in response to gibberellic acid, abscisic acid and salicylic acid. Shahpiri A; Talaei N; Finnie C J Sci Food Agric; 2015 Jan; 95(1):141-7. PubMed ID: 24740860 [TBL] [Abstract][Full Text] [Related]
6. Oxygen deficiency in barley (Hordeum vulgare) grain during malting. Wilhelmson A; Laitila A; Vilpola A; Olkku J; Kotaviita E; Fagerstedt K; Home S J Agric Food Chem; 2006 Jan; 54(2):409-16. PubMed ID: 16417298 [TBL] [Abstract][Full Text] [Related]
7. Stimulation of Phenolics, Antioxidant and α-Glucosidase Inhibitory Activities During Barley (Hordeum vulgare L.) Seed Germination. Ha KS; Jo SH; Mannam V; Kwon YI; Apostolidis E Plant Foods Hum Nutr; 2016 Jun; 71(2):211-7. PubMed ID: 27188780 [TBL] [Abstract][Full Text] [Related]
8. In situ study of water uptake by the seeds, endosperm and husk of barley using infrared spectroscopy. Cozzolino D; Degner S; Eglinton JK Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():200-6. PubMed ID: 26048560 [TBL] [Abstract][Full Text] [Related]
9. Spatio-temporal profiling and degradation of alpha-amylase isozymes during barley seed germination. Bak-Jensen KS; Laugesen S; Ostergaard O; Finnie C; Roepstorff P; Svensson B FEBS J; 2007 May; 274(10):2552-65. PubMed ID: 17437525 [TBL] [Abstract][Full Text] [Related]
10. Regulation of cell cycle activity in the embryo of barley seeds during germination as related to grain hydration. Gendreau E; Romaniello S; Barad S; Leymarie J; Benech-Arnold R; Corbineau F J Exp Bot; 2008; 59(2):203-12. PubMed ID: 18267947 [TBL] [Abstract][Full Text] [Related]
11. In vivo ¹H-NMR microimaging during seed imbibition, germination, and early growth. Terskikh V; Müller K; Kermode AR; Leubner-Metzger G Methods Mol Biol; 2011; 773():319-27. PubMed ID: 21898263 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of hot water and electron beam irradiation for reducing Fusarium infection in malting barley. Kottapalli B; Wolf-Hall CE; Schwarz P; Schwarz J; Gillespie J J Food Prot; 2003 Jul; 66(7):1241-6. PubMed ID: 12870759 [TBL] [Abstract][Full Text] [Related]
13. Constitutive differences between steely and mealy barley samples associated with endosperm modification. Ferrari B; Baronchelli M; Stanca AM; Gianinetti A J Sci Food Agric; 2010 Sep; 90(12):2105-13. PubMed ID: 20597093 [TBL] [Abstract][Full Text] [Related]
14. Analysis of pregerminated barley using hyperspectral image analysis. Arngren M; Hansen PW; Eriksen B; Larsen J; Larsen R J Agric Food Chem; 2011 Nov; 59(21):11385-94. PubMed ID: 21932866 [TBL] [Abstract][Full Text] [Related]
15. Malting revisited: Germination of barley (Hordeum vulgare L.) is inhibited by both oxygen deficiency and high carbon dioxide concentrations. Kleinwächter M; Meyer AK; Selmar D Food Chem; 2012 May; 132(1):476-81. PubMed ID: 26434318 [TBL] [Abstract][Full Text] [Related]
16. Water uptake and oil distribution during imbibition of seeds of western white pine (Pinus monticola Dougl. ex D. Don) monitored in vivo using magnetic resonance imaging. Terskikh VV; Feurtado JA; Ren C; Abrams SR; Kermode AR Planta; 2005 Apr; 221(1):17-27. PubMed ID: 15605241 [TBL] [Abstract][Full Text] [Related]
17. Comparative Phosphoproteomic Analysis of Barley Embryos with Different Dormancy during Imbibition. Ishikawa S; Barrero J; Takahashi F; Peck S; Gubler F; Shinozaki K; Umezawa T Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669653 [TBL] [Abstract][Full Text] [Related]
18. Thioredoxin and germinating barley: targets and protein redox changes. Marx C; Wong JH; Buchanan BB Planta; 2003 Jan; 216(3):454-60. PubMed ID: 12520337 [TBL] [Abstract][Full Text] [Related]
19. Impacts of PEG-6000 pretreatment for barley (Hordeum vulgare L.) seeds on the effect of their mature embryo in vitro culture and primary investigation on its physiological mechanism. Hongbo S; Zongsuo L; Mingan S; Bochu W Colloids Surf B Biointerfaces; 2005 Mar; 41(2-3):73-7. PubMed ID: 15737530 [TBL] [Abstract][Full Text] [Related]
20. Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Bethke PC; Gubler F; Jacobsen JV; Jones RL Planta; 2004 Sep; 219(5):847-55. PubMed ID: 15133666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]