These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 11829636)
1. Fungal growth and fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. Bakan B; Melcion D; Richard-Molard D; Cahagnier B J Agric Food Chem; 2002 Feb; 50(4):728-31. PubMed ID: 11829636 [TBL] [Abstract][Full Text] [Related]
2. Prospects for reducing fumonisin contamination of maize through genetic modification. Duvick J Environ Health Perspect; 2001 May; 109 Suppl 2(Suppl 2):337-42. PubMed ID: 11359705 [TBL] [Abstract][Full Text] [Related]
3. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride. Naef A; Zesiger T; Défago G J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384 [TBL] [Abstract][Full Text] [Related]
4. Fusarium verticillioides and fumonisin contamination in Bt and non-Bt maize cultivated in Brazil. Barroso VM; Rocha LO; Reis TA; Reis GM; Duarte AP; Michelotto MD; Correa B Mycotoxin Res; 2017 May; 33(2):121-127. PubMed ID: 28265970 [TBL] [Abstract][Full Text] [Related]
5. Comparison of fumonisin contamination using HPLC and ELISA methods in bt and near-isogenic maize hybrids infested with European corn borer or western bean cutworm. Bowers E; Hellmich R; Munkvold G J Agric Food Chem; 2014 Jul; 62(27):6463-72. PubMed ID: 24964132 [TBL] [Abstract][Full Text] [Related]
6. The effect of enhanced carotenoid content of transgenic maize grain on fungal colonization and mycotoxin content. Díaz-Gómez J; Marín S; Nogareda C; Sanchis V; Ramos AJ Mycotoxin Res; 2016 Nov; 32(4):221-228. PubMed ID: 27522218 [TBL] [Abstract][Full Text] [Related]
7. Occurrence of Fusarium mycotoxins in maize imported into the UK, 2004-2007. Scudamore KA; Patel S Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Mar; 26(3):363-71. PubMed ID: 19680910 [TBL] [Abstract][Full Text] [Related]
8. Modeling effects of environment, insect damage, and Bt genotypes on fumonisin accumulation in maize in Argentina and the Philippines. de la Campa R; Hooker DC; Miller JD; Schaafsma AW; Hammond BG Mycopathologia; 2005 Jun; 159(4):539-52. PubMed ID: 15983741 [TBL] [Abstract][Full Text] [Related]
9. Biotic and abiotic factors limiting efficacy of Bt corn in indirectly reducing mycotoxin levels in commercial fields. Dowd PF J Econ Entomol; 2001 Oct; 94(5):1067-74. PubMed ID: 11681667 [TBL] [Abstract][Full Text] [Related]
10. Role of Arias-Martín M; Haidukowski M; Farinós GP; Patiño B Toxins (Basel); 2021 Nov; 13(11):. PubMed ID: 34822564 [TBL] [Abstract][Full Text] [Related]
11. Fumonisins in conventional and transgenic, insect-resistant maize intended for fuel ethanol production: implications for fermentation efficiency and DDGS co-product quality. Bowers EL; Munkvold GP Toxins (Basel); 2014 Sep; 6(9):2804-25. PubMed ID: 25247264 [TBL] [Abstract][Full Text] [Related]
12. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation. Tarazona A; Gómez JV; Mateo EM; Jiménez M; Mateo F Int J Food Microbiol; 2019 Oct; 306():108259. PubMed ID: 31349113 [TBL] [Abstract][Full Text] [Related]
13. Fusarium mycotoxins (fumonisins, nivalenol, and zearalenone) and aflatoxins in corn from Southeast Asia. Yamashita A; Yoshizawa T; Aiura Y; Sanchez PC; Dizon EI; Arim RH; Sardjono Biosci Biotechnol Biochem; 1995 Sep; 59(9):1804-7. PubMed ID: 8520126 [TBL] [Abstract][Full Text] [Related]
14. Climatic models to predict occurrence of Fusarium toxins in wheat and maize. Schaafsma AW; Hooker DC Int J Food Microbiol; 2007 Oct; 119(1-2):116-25. PubMed ID: 17900733 [TBL] [Abstract][Full Text] [Related]
15. Analysis of Fusarium toxins in maize and wheat using thin layer chromatography. Schaafsma AW; Nicol RW; Savard ME; Sinha RC; Reid LM; Rottinghaus G Mycopathologia; 1998; 142(2):107-13. PubMed ID: 9926423 [TBL] [Abstract][Full Text] [Related]
16. The influence of local factors on the prediction of fumonisin contamination in maize. Torelli E; Firrao G; Bianchi G; Saccardo F; Locci R J Sci Food Agric; 2012 Jun; 92(8):1808-14. PubMed ID: 22228027 [TBL] [Abstract][Full Text] [Related]
17. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Oldenburg E; Höppner F; Ellner F; Weinert J Mycotoxin Res; 2017 Aug; 33(3):167-182. PubMed ID: 28455556 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Fumonisin Concentrations in Kernels of Transgenic Bt Maize Hybrids and Nontransgenic Hybrids. Munkvold GP; Hellmich RL; Rice LG Plant Dis; 1999 Feb; 83(2):130-138. PubMed ID: 30849794 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of mycotoxin and Aspergillus flavus levels in aging Bt and non-Bt corn residues under Mississippi no-till conditions. Abbas HK; Accinelli C; Zablotowicz RM; Abel CA; Bruns HA; Dong Y; Shier WT J Agric Food Chem; 2008 Aug; 56(16):7578-85. PubMed ID: 18642924 [TBL] [Abstract][Full Text] [Related]
20. Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000-2002. Hammond BG; Campbell KW; Pilcher CD; Degooyer TA; Robinson AE; McMillen BL; Spangler SM; Riordan SG; Rice LG; Richard JL J Agric Food Chem; 2004 Mar; 52(5):1390-7. PubMed ID: 14995151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]