BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 11829636)

  • 1. Fungal growth and fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain.
    Bakan B; Melcion D; Richard-Molard D; Cahagnier B
    J Agric Food Chem; 2002 Feb; 50(4):728-31. PubMed ID: 11829636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospects for reducing fumonisin contamination of maize through genetic modification.
    Duvick J
    Environ Health Perspect; 2001 May; 109 Suppl 2(Suppl 2):337-42. PubMed ID: 11359705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride.
    Naef A; Zesiger T; Défago G
    J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusarium verticillioides and fumonisin contamination in Bt and non-Bt maize cultivated in Brazil.
    Barroso VM; Rocha LO; Reis TA; Reis GM; Duarte AP; Michelotto MD; Correa B
    Mycotoxin Res; 2017 May; 33(2):121-127. PubMed ID: 28265970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of fumonisin contamination using HPLC and ELISA methods in bt and near-isogenic maize hybrids infested with European corn borer or western bean cutworm.
    Bowers E; Hellmich R; Munkvold G
    J Agric Food Chem; 2014 Jul; 62(27):6463-72. PubMed ID: 24964132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of enhanced carotenoid content of transgenic maize grain on fungal colonization and mycotoxin content.
    Díaz-Gómez J; Marín S; Nogareda C; Sanchis V; Ramos AJ
    Mycotoxin Res; 2016 Nov; 32(4):221-228. PubMed ID: 27522218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of Fusarium mycotoxins in maize imported into the UK, 2004-2007.
    Scudamore KA; Patel S
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Mar; 26(3):363-71. PubMed ID: 19680910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling effects of environment, insect damage, and Bt genotypes on fumonisin accumulation in maize in Argentina and the Philippines.
    de la Campa R; Hooker DC; Miller JD; Schaafsma AW; Hammond BG
    Mycopathologia; 2005 Jun; 159(4):539-52. PubMed ID: 15983741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotic and abiotic factors limiting efficacy of Bt corn in indirectly reducing mycotoxin levels in commercial fields.
    Dowd PF
    J Econ Entomol; 2001 Oct; 94(5):1067-74. PubMed ID: 11681667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of
    Arias-Martín M; Haidukowski M; Farinós GP; Patiño B
    Toxins (Basel); 2021 Nov; 13(11):. PubMed ID: 34822564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fumonisins in conventional and transgenic, insect-resistant maize intended for fuel ethanol production: implications for fermentation efficiency and DDGS co-product quality.
    Bowers EL; Munkvold GP
    Toxins (Basel); 2014 Sep; 6(9):2804-25. PubMed ID: 25247264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation.
    Tarazona A; Gómez JV; Mateo EM; Jiménez M; Mateo F
    Int J Food Microbiol; 2019 Oct; 306():108259. PubMed ID: 31349113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusarium mycotoxins (fumonisins, nivalenol, and zearalenone) and aflatoxins in corn from Southeast Asia.
    Yamashita A; Yoshizawa T; Aiura Y; Sanchez PC; Dizon EI; Arim RH; Sardjono
    Biosci Biotechnol Biochem; 1995 Sep; 59(9):1804-7. PubMed ID: 8520126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climatic models to predict occurrence of Fusarium toxins in wheat and maize.
    Schaafsma AW; Hooker DC
    Int J Food Microbiol; 2007 Oct; 119(1-2):116-25. PubMed ID: 17900733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Fusarium toxins in maize and wheat using thin layer chromatography.
    Schaafsma AW; Nicol RW; Savard ME; Sinha RC; Reid LM; Rottinghaus G
    Mycopathologia; 1998; 142(2):107-13. PubMed ID: 9926423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of local factors on the prediction of fumonisin contamination in maize.
    Torelli E; Firrao G; Bianchi G; Saccardo F; Locci R
    J Sci Food Agric; 2012 Jun; 92(8):1808-14. PubMed ID: 22228027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed.
    Oldenburg E; Höppner F; Ellner F; Weinert J
    Mycotoxin Res; 2017 Aug; 33(3):167-182. PubMed ID: 28455556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Fumonisin Concentrations in Kernels of Transgenic Bt Maize Hybrids and Nontransgenic Hybrids.
    Munkvold GP; Hellmich RL; Rice LG
    Plant Dis; 1999 Feb; 83(2):130-138. PubMed ID: 30849794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of mycotoxin and Aspergillus flavus levels in aging Bt and non-Bt corn residues under Mississippi no-till conditions.
    Abbas HK; Accinelli C; Zablotowicz RM; Abel CA; Bruns HA; Dong Y; Shier WT
    J Agric Food Chem; 2008 Aug; 56(16):7578-85. PubMed ID: 18642924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000-2002.
    Hammond BG; Campbell KW; Pilcher CD; Degooyer TA; Robinson AE; McMillen BL; Spangler SM; Riordan SG; Rice LG; Richard JL
    J Agric Food Chem; 2004 Mar; 52(5):1390-7. PubMed ID: 14995151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.