These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11829646)

  • 21. Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling.
    Jin ZH; Xu B; Lin SZ; Jin QC; Cen PL
    Appl Biochem Biotechnol; 2009 Dec; 159(3):655-63. PubMed ID: 19132553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and evaluation of an aerial spray trial with true replicates to test the efficacy of Bacillus thuringiensis insecticide in a boreal forest.
    Cadogan BL; Scharbach RD
    J Econ Entomol; 2003 Apr; 96(2):388-95. PubMed ID: 14994805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Larval feeding behaviour affects the impact of staminate flower production on the suitability of balsam fir trees for spruce budworm.
    Bauce É; Carisey N
    Oecologia; 1996 Jan; 105(1):126-131. PubMed ID: 28307131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Properties, toxicity and current applications of the biolarvicide spinosad.
    Santos VSV; Pereira BB
    J Toxicol Environ Health B Crit Rev; 2020; 23(1):13-26. PubMed ID: 31709913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spinosad, a new tool for insect control in vegetables cultivated in greenhouses.
    Schoonejans T; Van der Staaij M
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):375-86. PubMed ID: 12425058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. History of the spruce-fir forest in the Catskill Mountains of New York.
    Kudish M
    Ann N Y Acad Sci; 2013 Sep; 1298():78-85. PubMed ID: 25098490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Benefit-cost analysis of spruce budworm (Choristoneura fumiferana Clem.) control: incorporating market and non-market values.
    Chang WY; Lantz VA; Hennigar CR; MacLean DA
    J Environ Manage; 2012 Jan; 93(1):104-12. PubMed ID: 22054576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Persistence of balsam fir and black spruce populations in the mixedwood and coniferous bioclimatic domain of eastern North America.
    Messaoud Y; Goudiaby V; Bergeron Y
    Ecol Evol; 2019 May; 9(9):5118-5132. PubMed ID: 31110666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical management of forest pest epidemics: a case study.
    Ecobichon DJ
    Biomed Environ Sci; 1990 Jun; 3(2):217-39. PubMed ID: 2099793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spruce budworm growth, development and food utilization on young and old balsam fir trees.
    Bauce É; Crépin M; Carisey N
    Oecologia; 1994 May; 97(4):499-507. PubMed ID: 28313739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Springtime resumption of photosynthesis in balsam fir (Abies balsamea).
    Goodine GK; Lavigne MB; Krasowski MJ
    Tree Physiol; 2008 Jul; 28(7):1069-76. PubMed ID: 18450571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies for Enhancing the Yield of the Potent Insecticide Spinosad in Actinomycetes.
    Tao H; Zhang Y; Deng Z; Liu T
    Biotechnol J; 2019 Jan; 14(1):e1700769. PubMed ID: 29897659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissipation and residues of spinosad in eggplant and soil.
    Zhao E; Xu Y; Dong M; Jiang S; Zhou Z; Han L
    Bull Environ Contam Toxicol; 2007 Apr; 78(3-4):222-5. PubMed ID: 17437051
    [No Abstract]   [Full Text] [Related]  

  • 34. Comparative transcriptomic analysis of two Saccharopolyspora spinosa strains reveals the relationships between primary metabolism and spinosad production.
    Zhang Y; Liu X; Yin T; Li Q; Zou Q; Huang K; Guo D; Zhang X
    Sci Rep; 2021 Jul; 11(1):14779. PubMed ID: 34285307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of energy budgets for spruce budworm Choristoneura fumiferana (Clemens) on balsam fir and white spruce.
    Noah Koller C; Leonard DE
    Oecologia; 1981 May; 49(1):14-20. PubMed ID: 28309443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of spinosad and its metabolites in food and environmental matrices. 3. Immunoassay methods.
    Young DL; Mihaliak CA; West SD; Hanselman KA; Collins RA; Phillips AM; Robb CK
    J Agric Food Chem; 2000 Nov; 48(11):5146-53. PubMed ID: 11087450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of spinosad and its metabolites in food and environmental matrices. 1. High-performance liquid chromatography with ultraviolet detection.
    West SD; Yeh LT; Turner LG; Schwedler DA; Thomas AD; Duebelbeis DO
    J Agric Food Chem; 2000 Nov; 48(11):5131-7. PubMed ID: 11087448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Labeling Feral Spruce Budworm (Lepidoptera: Tortricidae) Populations With Rubidium.
    MacKinnon W; Eveleigh E; Silk P; Forbes G
    Environ Entomol; 2016 Apr; 45(2):427-35. PubMed ID: 26920559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laboratory and field evaluation of spinosad, a biorational natural product, against larvae of Culex mosquitoes.
    Jiang Y; Mulla MS
    J Am Mosq Control Assoc; 2009 Dec; 25(4):456-66. PubMed ID: 20099593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spinosad affects chemical communication in the German cockroach, Blatella germanica (L).
    Habbachi W; Bensafi H; Adjami Y; Ouakid ML; Farine JP; Everaerts C
    J Chem Ecol; 2009 Dec; 35(12):1423-6. PubMed ID: 20063207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.