BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 11830311)

  • 1. Definition of gross tumor volume in lung cancer: inter-observer variability.
    Van de Steene J; Linthout N; de Mey J; Vinh-Hung V; Claassens C; Noppen M; Bel A; Storme G
    Radiother Oncol; 2002 Jan; 62(1):37-49. PubMed ID: 11830311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Impact of PET/CT on precise radiotherapy planning for non-small cell lung cancer].
    Gong HY; Yu JM; Fu Z; Li BS; Li JB; Liu TH
    Zhonghua Zhong Liu Za Zhi; 2006 Jan; 28(1):54-7. PubMed ID: 16737623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation.
    Grills IS; Yan D; Martinez AA; Vicini FA; Wong JW; Kestin LL
    Int J Radiat Oncol Biol Phys; 2003 Nov; 57(3):875-90. PubMed ID: 14529795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer.
    Ashamalla H; Rafla S; Parikh K; Mokhtar B; Goswami G; Kambam S; Abdel-Dayem H; Guirguis A; Ross P; Evola A
    Int J Radiat Oncol Biol Phys; 2005 Nov; 63(4):1016-23. PubMed ID: 15979817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer.
    Vanuytsel LJ; Vansteenkiste JF; Stroobants SG; De Leyn PR; De Wever W; Verbeken EK; Gatti GG; Huyskens DP; Kutcher GJ
    Radiother Oncol; 2000 Jun; 55(3):317-24. PubMed ID: 10869746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observer variation in target volume delineation of lung cancer related to radiation oncologist-computer interaction: a 'Big Brother' evaluation.
    Steenbakkers RJ; Duppen JC; Fitton I; Deurloo KE; Zijp L; Uitterhoeve AL; Rodrigus PT; Kramer GW; Bussink J; De Jaeger K; Belderbos JS; Hart AA; Nowak PJ; van Herk M; Rasch CR
    Radiother Oncol; 2005 Nov; 77(2):182-90. PubMed ID: 16256231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis.
    Steenbakkers RJ; Duppen JC; Fitton I; Deurloo KE; Zijp LJ; Comans EF; Uitterhoeve AL; Rodrigus PT; Kramer GW; Bussink J; De Jaeger K; Belderbos JS; Nowak PJ; van Herk M; Rasch CR
    Int J Radiat Oncol Biol Phys; 2006 Feb; 64(2):435-48. PubMed ID: 16198064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non-small cell lung cancer patients under abdominal compression.
    Han C; Sampath S; Schultheisss TE; Wong JYC
    Med Dosim; 2017 Summer; 42(2):116-121. PubMed ID: 28433482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET).
    Erdi YE; Rosenzweig K; Erdi AK; Macapinlac HA; Hu YC; Braban LE; Humm JL; Squire OD; Chui CS; Larson SM; Yorke ED
    Radiother Oncol; 2002 Jan; 62(1):51-60. PubMed ID: 11830312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproducibility of "intelligent" contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method.
    Bayne M; Hicks RJ; Everitt S; Fimmell N; Ball D; Reynolds J; Lau E; Pitman A; Ware R; MacManus M
    Int J Radiat Oncol Biol Phys; 2010 Jul; 77(4):1151-7. PubMed ID: 20610039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal target volume determined with expansion margins beyond composite gross tumor volume in three-dimensional conformal radiotherapy for lung cancer.
    Shih HA; Jiang SB; Aljarrah KM; Doppke KP; Choi NC
    Int J Radiat Oncol Biol Phys; 2004 Oct; 60(2):613-22. PubMed ID: 15380599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer.
    Nestle U; Kremp S; Schaefer-Schuler A; Sebastian-Welsch C; Hellwig D; Rübe C; Kirsch CM
    J Nucl Med; 2005 Aug; 46(8):1342-8. PubMed ID: 16085592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-coplanar beam intensity modulation allows large dose escalation in stage III lung cancer.
    Derycke S; Van Duyse B; De Gersem W; De Wagter C; De Neve W
    Radiother Oncol; 1997 Dec; 45(3):253-61. PubMed ID: 9426119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC).
    Greco C; Rosenzweig K; Cascini GL; Tamburrini O
    Lung Cancer; 2007 Aug; 57(2):125-34. PubMed ID: 17478008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of computed tomography and [18F] fluorodeoxyglucose positron emission tomography image fusion in conformal radiotherapy of non-small cell lung cancer: a comparison with standard techniques with and without elective nodal irradiation.
    Ceresoli GL; Cattaneo GM; Castellone P; Rizzos G; Landoni C; Gregorc V; Calandrino R; Villa E; Messa C; Santoro A; Fazio F
    Tumori; 2007; 93(1):88-96. PubMed ID: 17455878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists.
    Giraud P; Elles S; Helfre S; De Rycke Y; Servois V; Carette MF; Alzieu C; Bondiau PY; Dubray B; Touboul E; Housset M; Rosenwald JC; Cosset JM
    Radiother Oncol; 2002 Jan; 62(1):27-36. PubMed ID: 11830310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study.
    van Der Wel A; Nijsten S; Hochstenbag M; Lamers R; Boersma L; Wanders R; Lutgens L; Zimny M; Bentzen SM; Wouters B; Lambin P; De Ruysscher D
    Int J Radiat Oncol Biol Phys; 2005 Mar; 61(3):649-55. PubMed ID: 15708242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of target volume segmentation accuracy and variability on treatment planning for 4D-CT-based non-small cell lung cancer radiotherapy.
    Martin S; Johnson C; Brophy M; Palma DA; Barron JL; Beauchemin SS; Louie AV; Yu E; Yaremko B; Ahmad B; Rodrigues GB; Gaede S
    Acta Oncol; 2015 Mar; 54(3):322-32. PubMed ID: 25350526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer.
    Senan S; van Sörnsen de Koste J; Samson M; Tankink H; Jansen P; Nowak PJ; Krol AD; Schmitz P; Lagerwaard FJ
    Radiother Oncol; 1999 Dec; 53(3):247-55. PubMed ID: 10660205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515.
    Bradley J; Bae K; Choi N; Forster K; Siegel BA; Brunetti J; Purdy J; Faria S; Vu T; Thorstad W; Choy H
    Int J Radiat Oncol Biol Phys; 2012 Jan; 82(1):435-41.e1. PubMed ID: 21075551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.