BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 11830565)

  • 41. Junctional contacts between Sertoli cells in normal and aspermatogenic rat seminiferous epithelium contain alpha6beta1 integrins, and their formation is controlled by follicle-stimulating hormone.
    Salanova M; Ricci G; Boitani C; Stefanini M; De Grossi S; Palombi F
    Biol Reprod; 1998 Feb; 58(2):371-8. PubMed ID: 9475391
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Continual maintenance of the blood-testis barrier during spermatogenesis: the intermediate compartment theory revisited.
    Yazama F
    J Reprod Dev; 2008 Oct; 54(5):299-305. PubMed ID: 18544902
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of germ cells from pre-pubertal bull calves in preparation for germ cell transplantation.
    Herrid M; Davey RJ; Hill JR
    Cell Tissue Res; 2007 Nov; 330(2):321-9. PubMed ID: 17593396
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells.
    Yomogida K; Ohtani H; Harigae H; Ito E; Nishimune Y; Engel JD; Yamamoto M
    Development; 1994 Jul; 120(7):1759-66. PubMed ID: 7924983
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Annexin A2 is critical for blood-testis barrier integrity and spermatid disengagement in the mammalian testis.
    Chojnacka K; Bilinska B; Mruk DD
    Biochim Biophys Acta Mol Cell Res; 2017 Mar; 1864(3):527-545. PubMed ID: 27974247
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Androgen Receptor Coactivator ARID4B Is Required for the Function of Sertoli Cells in Spermatogenesis.
    Wu RC; Zeng Y; Pan IW; Wu MY
    Mol Endocrinol; 2015 Sep; 29(9):1334-46. PubMed ID: 26258622
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative effects of neonatal exposure of male rats to potent and weak (environmental) estrogens on spermatogenesis at puberty and the relationship to adult testis size and fertility: evidence for stimulatory effects of low estrogen levels.
    Atanassova N; McKinnell C; Turner KJ; Walker M; Fisher JS; Morley M; Millar MR; Groome NP; Sharpe RM
    Endocrinology; 2000 Oct; 141(10):3898-907. PubMed ID: 11014247
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of spermatogenesis by a local functional axis in the testis: role of the basement membrane-derived noncollagenous 1 domain peptide.
    Chen H; Mruk DD; Lee WM; Cheng CY
    FASEB J; 2017 Aug; 31(8):3587-3607. PubMed ID: 28487282
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activin bioactivity affects germ cell differentiation in the postnatal mouse testis in vivo.
    Mithraprabhu S; Mendis S; Meachem SJ; Tubino L; Matzuk MM; Brown CW; Loveland KL
    Biol Reprod; 2010 May; 82(5):980-90. PubMed ID: 20130270
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sertoli-germ cell junctions in the testis: a review of recent data.
    Kopera IA; Bilinska B; Cheng CY; Mruk DD
    Philos Trans R Soc Lond B Biol Sci; 2010 May; 365(1546):1593-605. PubMed ID: 20403872
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cellular distribution of transforming growth factor betas 1, 2, and 3 and their types I and II receptors during postnatal development and spermatogenesis in the boar testis.
    Caussanel V; Tabone E; Hendrick JC; Dacheux F; Benahmed M
    Biol Reprod; 1997 Feb; 56(2):357-67. PubMed ID: 9116134
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Variation in expression of hsp27 messenger ribonucleic acid during the cycle of the seminiferous epithelium and co-localization of hsp27 and microfilaments in Sertoli cells of the rat.
    Welsh MJ; Wu W; Parvinen M; Gilmont RR
    Biol Reprod; 1996 Jul; 55(1):141-51. PubMed ID: 8793069
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dissociation of the mouse testis and characterization of isolated spermatogenic cells.
    Bellvé AR; Millette CF; Bhatnagar YM; O'Brien DA
    J Histochem Cytochem; 1977 Jul; 25(7):480-94. PubMed ID: 893996
    [No Abstract]   [Full Text] [Related]  

  • 54. Cytology of the human seminiferous epithelium.
    Schenck U; Schill WB
    Acta Cytol; 1988; 32(5):689-96. PubMed ID: 3421017
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Irradiation affects germ and somatic cells in prepubertal monkey testis xenografts.
    Tröndle I; Westernströer B; Wistuba J; Terwort N; Schlatt S; Neuhaus N
    Mol Hum Reprod; 2017 Mar; 23(3):141-154. PubMed ID: 28130393
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cell type-autonomous and non-autonomous requirements for Dmrt1 in postnatal testis differentiation.
    Kim S; Bardwell VJ; Zarkower D
    Dev Biol; 2007 Jul; 307(2):314-27. PubMed ID: 17540358
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative testis morphometry and seminiferous epithelium cycle length in donkeys and mules.
    Neves ES; Chiarini-Garcia H; França LR
    Biol Reprod; 2002 Jul; 67(1):247-55. PubMed ID: 12080024
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intercellular adhesion molecules (ICAMs) and spermatogenesis.
    Xiao X; Mruk DD; Cheng CY
    Hum Reprod Update; 2013; 19(2):167-86. PubMed ID: 23287428
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The seminiferous epithelium cycle length in the black tufted-ear marmoset (Callithrix penicillata) is similar to humans.
    Leal MC; França LR
    Biol Reprod; 2006 Apr; 74(4):616-24. PubMed ID: 16319285
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CYP26 Enzymes Are Necessary Within the Postnatal Seminiferous Epithelium for Normal Murine Spermatogenesis.
    Hogarth CA; Evans E; Onken J; Kent T; Mitchell D; Petkovich M; Griswold MD
    Biol Reprod; 2015 Jul; 93(1):19. PubMed ID: 26040672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.