BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11830660)

  • 1. Translocation of a functional protein by a voltage-dependent ion channel.
    Slatin SL; Nardi A; Jakes KS; Baty D; Duché D
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1286-91. PubMed ID: 11830660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cytotoxic domain of colicin E9 is a channel-forming endonuclease.
    Mosbahi K; Lemaître C; Keeble AH; Mobasheri H; Morel B; James R; Moore GR; Lea EJ; Kleanthous C
    Nat Struct Biol; 2002 Jun; 9(6):476-84. PubMed ID: 12021774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gating movements of colicin A and colicin Ia are different.
    Slatin SL; Duché D; Kienker PK; Baty D
    J Membr Biol; 2004 Nov; 202(2):73-83. PubMed ID: 15702371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sizing the protein translocation pathway of colicin Ia channels.
    Kienker PK; Jakes KS; Blaustein RO; Miller C; Finkelstein A
    J Gen Physiol; 2003 Aug; 122(2):161-76. PubMed ID: 12860927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a translocated protein segment in a voltage-dependent channel.
    Slatin SL; Qiu XQ; Jakes KS; Finkelstein A
    Nature; 1994 Sep; 371(6493):158-61. PubMed ID: 7521016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Major transmembrane movement associated with colicin Ia channel gating.
    Qiu XQ; Jakes KS; Kienker PK; Finkelstein A; Slatin SL
    J Gen Physiol; 1996 Mar; 107(3):313-28. PubMed ID: 8868045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein translocation across planar bilayers by the colicin Ia channel-forming domain: where will it end?
    Kienker PK; Jakes KS; Finkelstein A
    J Gen Physiol; 2000 Oct; 116(4):587-98. PubMed ID: 11004207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translocation of inserted foreign epitopes by a channel-forming protein.
    Jakes KS; Kienker PK; Slatin SL; Finkelstein A
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4321-6. PubMed ID: 9539735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic properties of the colicin E1 ion channel.
    Cramer WA; Zhang YL; Schendel S; Merrill AR; Song HY; Stauffacher CV; Cohen FS
    FEMS Microbiol Immunol; 1992 Sep; 5(1-3):71-81. PubMed ID: 1384599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a translocated gating charge in a voltage-dependent channel. Colicin E1 channels in planar phospholipid bilayer membranes.
    Abrams CK; Jakes KS; Finkelstein A; Slatin SL
    J Gen Physiol; 1991 Jul; 98(1):77-93. PubMed ID: 1719126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific biotinylation of colicin Ia. A probe for protein conformation in the membrane.
    Qiu XQ; Jakes KS; Finkelstein A; Slatin SL
    J Biol Chem; 1994 Mar; 269(10):7483-8. PubMed ID: 8125966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1.
    Liu QR; Crozel V; Levinthal F; Slatin S; Finkelstein A; Levinthal C
    Proteins; 1986 Nov; 1(3):218-29. PubMed ID: 2453053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of channel-lining amino acid residues in the hydrophobic segment of colicin Ia.
    Kienker PK; Jakes KS; Finkelstein A
    J Gen Physiol; 2008 Dec; 132(6):693-707. PubMed ID: 19029376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of putative active-site residues in the DNase domain of colicin E9 by random mutagenesis.
    Garinot-Schneider C; Pommer AJ; Moore GR; Kleanthous C; James R
    J Mol Biol; 1996 Aug; 260(5):731-42. PubMed ID: 8709151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histidine 440 controls the opening of colicin E1 channels in a lipid-dependent manner.
    Sobko AA; Rokitskaya TI; Kotova EA
    Biochim Biophys Acta; 2009 Sep; 1788(9):1962-6. PubMed ID: 19560438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The C-terminal half of the colicin A pore-forming domain is active in vivo and in vitro.
    Nardi A; Slatin SL; Baty D; Duché D
    J Mol Biol; 2001 Apr; 307(5):1293-303. PubMed ID: 11292342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of the charged residues near the carboxy terminus of the colicin E1 ion channel.
    Shiver JW; Cohen FS; Merrill AR; Cramer WA
    Biochemistry; 1988 Nov; 27(22):8421-8. PubMed ID: 2468358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the role of lipid in colicin pore formation.
    Zakharov SD; Kotova EA; Antonenko YN; Cramer WA
    Biochim Biophys Acta; 2004 Nov; 1666(1-2):239-49. PubMed ID: 15519318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.