These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 11830792)
1. [Mental activity hand orthosis control using the EEG: a case study]. Pfurtscheller G; Müller G; Korisek G Rehabilitation (Stuttg); 2002 Feb; 41(1):48-52. PubMed ID: 11830792 [TBL] [Abstract][Full Text] [Related]
2. EEG-based neuroprosthesis control: a step towards clinical practice. Müller-Putz GR; Scherer R; Pfurtscheller G; Rupp R Neurosci Lett; 2005 Jul 1-8; 382(1-2):169-74. PubMed ID: 15911143 [TBL] [Abstract][Full Text] [Related]
3. Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI. Pfurtscheller G; Solis-Escalante T; Ortner R; Linortner P; Müller-Putz GR IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):409-14. PubMed ID: 20144923 [TBL] [Abstract][Full Text] [Related]
4. An SSVEP BCI to control a hand orthosis for persons with tetraplegia. Ortner R; Allison BZ; Korisek G; Gaggl H; Pfurtscheller G IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):1-5. PubMed ID: 20875978 [TBL] [Abstract][Full Text] [Related]
5. Neurofeedback-based motor imagery training for brain-computer interface (BCI). Hwang HJ; Kwon K; Im CH J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521 [TBL] [Abstract][Full Text] [Related]
6. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control. Huang D; Lin P; Fei DY; Chen X; Bai O J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679 [TBL] [Abstract][Full Text] [Related]
7. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects. Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371 [TBL] [Abstract][Full Text] [Related]
8. Brain-computer interface (BCI) operation: signal and noise during early training sessions. McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184 [TBL] [Abstract][Full Text] [Related]
9. Noninvasive brain-computer interface driven hand orthosis. King CE; Wang PT; Mizuta M; Reinkensmeyer DJ; Do AH; Moromugi S; Nenadic Z Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5786-9. PubMed ID: 22255655 [TBL] [Abstract][Full Text] [Related]
10. Centrally controlled heart rate changes during mental practice in immersive virtual environment: a case study with a tetraplegic. Pfurtscheller G; Leeb R; Friedman D; Slater M Int J Psychophysiol; 2008 Apr; 68(1):1-5. PubMed ID: 18187220 [TBL] [Abstract][Full Text] [Related]
11. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977 [TBL] [Abstract][Full Text] [Related]
13. Information transfer rate in a five-classes brain-computer interface. Obermaier B; Neuper C; Guger C; Pfurtscheller G IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):283-8. PubMed ID: 11561664 [TBL] [Abstract][Full Text] [Related]
14. A motor imagery-based online interactive brain-controlled switch: paradigm development and preliminary test. Qian K; Nikolov P; Huang D; Fei DY; Chen X; Bai O Clin Neurophysiol; 2010 Aug; 121(8):1304-13. PubMed ID: 20347386 [TBL] [Abstract][Full Text] [Related]
15. Imaginary motor movement EEG classification by Accumulative-Autocorrelation-Pulse. Mayer IV; Takahashi H; Sakamoto K Electromyogr Clin Neurophysiol; 2001; 41(3):159-69. PubMed ID: 11402508 [TBL] [Abstract][Full Text] [Related]
16. Exploring virtual environments with an EEG-based BCI through motor imagery. Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704 [TBL] [Abstract][Full Text] [Related]
17. Brain activation during manipulation of the myoelectric prosthetic hand: a functional magnetic resonance imaging study. Maruishi M; Tanaka Y; Muranaka H; Tsuji T; Ozawa Y; Imaizumi S; Miyatani M; Kawahara J Neuroimage; 2004 Apr; 21(4):1604-11. PubMed ID: 15050584 [TBL] [Abstract][Full Text] [Related]
18. Graz-BCI: state of the art and clinical applications. Pfurtscheller G; Neuper C; Müller GR; Obermaier B; Krausz G; Schlögl A; Scherer R; Graimann B; Keinrath C; Skliris D; Wörtz M; Supp G; Schrank C IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):177-80. PubMed ID: 12899267 [TBL] [Abstract][Full Text] [Related]
19. Control of an electrical prosthesis with an SSVEP-based BCI. Müller-Putz GR; Pfurtscheller G IEEE Trans Biomed Eng; 2008 Jan; 55(1):361-4. PubMed ID: 18232384 [TBL] [Abstract][Full Text] [Related]
20. Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: a proof-of-concept study. Vučković A; Wallace L; Allan DB J Neurol Phys Ther; 2015 Jan; 39(1):3-14. PubMed ID: 25415550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]