BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 11831550)

  • 1. Paradoxical signal transduction in neurobiological systems.
    Colpaert FC; Frégnac Y
    Mol Neurobiol; 2001; 24(1-3):145-68. PubMed ID: 11831550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sign-reversal during persistent activation in mu-opioid signal transduction.
    Bruins Slot LA; Pauwels PJ; Colpaert FC
    J Theor Biol; 2002 Mar; 215(2):169-82. PubMed ID: 12051972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental realization of a signal transduction algorithm.
    Bruins Slot LA; Colpaert FC
    J Theor Biol; 1999 Sep; 200(1):39-48. PubMed ID: 10479538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opioid receptor signal transduction in narcotic tolerance and dependence.
    Sadee W; Gintzler A
    NIDA Res Monogr; 1996; 162():64-6. PubMed ID: 9066816
    [No Abstract]   [Full Text] [Related]  

  • 5. Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gbetagamma signaling.
    Wang HY; Friedman E; Olmstead MC; Burns LH
    Neuroscience; 2005; 135(1):247-61. PubMed ID: 16084657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of opioid receptor phosphorylation and trafficking in adaptations to persistent opioid treatment.
    Johnson EE; Christie MJ; Connor M
    Neurosignals; 2005; 14(6):290-302. PubMed ID: 16772732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mu and delta opioid receptor desensitization in undifferentiated human neuroblastoma SHSY5Y cells.
    Prather PL; Tsai AW; Law PY
    J Pharmacol Exp Ther; 1994 Jul; 270(1):177-84. PubMed ID: 8035314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effector antagonism by the regulators of G protein signalling (RGS) proteins causes desensitization of mu-opioid receptors in the CNS.
    Garzón J; Rodríguez-Muñoz M; de la Torre-Madrid E; Sánchez-Blázquez P
    Psychopharmacology (Berl); 2005 Jun; 180(1):1-11. PubMed ID: 15830230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mu-Opioid receptor-induced Ca2+ mobilization and astroglial development: morphine inhibits DNA synthesis and stimulates cellular hypertrophy through a Ca(2+)-dependent mechanism.
    Hauser KF; Stiene-Martin A; Mattson MP; Elde RP; Ryan SE; Godleske CC
    Brain Res; 1996 May; 720(1-2):191-203. PubMed ID: 8782912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mu-opioid receptor activation induces transcriptional plasticity in the central extended amygdala.
    Befort K; Filliol D; Ghate A; Darcq E; Matifas A; Muller J; Lardenois A; Thibault C; Dembele D; Le Merrer J; Becker JA; Poch O; Kieffer BL
    Eur J Neurosci; 2008 Jun; 27(11):2973-84. PubMed ID: 18588537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postsynaptic mu-opioid receptor response in the median preoptic nucleus is altered by a systemic sodium challenge in rats.
    Henry M; Drolet G; Mouginot D
    Eur J Neurosci; 2008 Mar; 27(5):1197-209. PubMed ID: 18364037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mu opioid receptor: a gateway to drug addiction.
    Contet C; Kieffer BL; Befort K
    Curr Opin Neurobiol; 2004 Jun; 14(3):370-8. PubMed ID: 15194118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia.
    Gomes I; Gupta A; Filipovska J; Szeto HH; Pintar JE; Devi LA
    Proc Natl Acad Sci U S A; 2004 Apr; 101(14):5135-9. PubMed ID: 15044695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular mechanism for anti-analgesic action of agonists of the kappa-opioid receptor.
    Pan ZZ; Tershner SA; Fields HL
    Nature; 1997 Sep; 389(6649):382-5. PubMed ID: 9311779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene.
    Matthes HW; Maldonado R; Simonin F; Valverde O; Slowe S; Kitchen I; Befort K; Dierich A; Le Meur M; Dollé P; Tzavara E; Hanoune J; Roques BP; Kieffer BL
    Nature; 1996 Oct; 383(6603):819-23. PubMed ID: 8893006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective interactions of spinophilin with the C-terminal domains of the δ- and μ-opioid receptors and G proteins differentially modulate opioid receptor signaling.
    Fourla DD; Papakonstantinou MP; Vrana SM; Georgoussi Z
    Cell Signal; 2012 Dec; 24(12):2315-28. PubMed ID: 22922354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G(z) can mediate the acute actions of mu- and kappa-opioids but is not involved in opioid-induced adenylyl cyclase supersensitization.
    Tso PH; Wong YH
    J Pharmacol Exp Ther; 2000 Oct; 295(1):168-76. PubMed ID: 10991975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regionally selective activation of ERK and JNK in morphine paradoxical hyperalgesia: a step toward improving opioid pain therapy.
    Sanna MD; Ghelardini C; Galeotti N
    Neuropharmacology; 2014 Nov; 86():67-77. PubMed ID: 24950452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low doses of cyclic AMP-phosphodiesterase inhibitors rapidly evoke opioid receptor-mediated thermal hyperalgesia in naïve mice which is converted to prominent analgesia by cotreatment with ultra-low-dose naltrexone.
    Crain SM; Shen KF
    Brain Res; 2008 Sep; 1231():16-24. PubMed ID: 18656459
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.