These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 11831561)

  • 1. Catechol as a nucleophilic catalyst of peptide bond formation.
    Ivanova G; Bratovanova E; Petkov D
    J Pept Sci; 2002 Jan; 8(1):8-12. PubMed ID: 11831561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide synthesis of aspartame precursor using organic-solvent-stable PST-01 protease in monophasic aqueous-organic solvent systems.
    Tsuchiyama S; Doukyu N; Yasuda M; Ishimi K; Ogino H
    Biotechnol Prog; 2007; 23(4):820-3. PubMed ID: 17480054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-assisted catalysis of peptide bond formation by the ribosome.
    Weinger JS; Parnell KM; Dorner S; Green R; Strobel SA
    Nat Struct Mol Biol; 2004 Nov; 11(11):1101-6. PubMed ID: 15475967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide bond formation does not involve acid-base catalysis by ribosomal residues.
    Bieling P; Beringer M; Adio S; Rodnina MV
    Nat Struct Mol Biol; 2006 May; 13(5):423-8. PubMed ID: 16648860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of the o-OH participation in catechol ester ammonolysis.
    Rangelov MA; Vayssilov GN; Yomtova VM; Petkov DD
    Org Biomol Chem; 2005 Mar; 3(5):737-44. PubMed ID: 15731858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasiplanarity of the peptide bond.
    Chalupský J; Vondrásek J; Spirko V
    J Phys Chem A; 2008 Jan; 112(4):693-9. PubMed ID: 18177024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalysis in peptide synthesis with active esters. II. Effects of concentrated carboxylic acids on the aminolysis of benzyloxycarbonyl-L-phenylalanine p-nitrophenyl ester in dioxane.
    Nakamizo N
    Bull Chem Soc Jpn; 1969 Apr; 42(4):1078-82. PubMed ID: 5806454
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of copper salts on peptide bond formation using peptide thioesters.
    Ingenito R; Wenschuh H
    Org Lett; 2003 Nov; 5(24):4587-90. PubMed ID: 14627390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis in peptide synthesis with active esters. I. Bifunctional catalysis in the aminolysis of benzyloxycarbonyl-L-phenylalanine p-nitrophenyl ester in dioxane.
    Nakamizo N
    Bull Chem Soc Jpn; 1969 Apr; 42(4):1071-7. PubMed ID: 5806453
    [No Abstract]   [Full Text] [Related]  

  • 10. Does silica surface catalyse peptide bond formation? New insights from first-principles calculations.
    Rimola A; Tosoni S; Sodupe M; Ugliengo P
    Chemphyschem; 2006 Jan; 7(1):157-63. PubMed ID: 16345117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rate enhancement produced by the ribosome: an improved model.
    Schroeder GK; Wolfenden R
    Biochemistry; 2007 Apr; 46(13):4037-44. PubMed ID: 17352494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide-bond modification for metal coordination: peptides containing two hydroxamate groups.
    Ye Y; Liu M; Kao JL; Marshall GR
    Biopolymers; 2003; 71(4):489-515. PubMed ID: 14517900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalysis of the cleavage of uridine 3'-2,2,2-trichloroethylphosphate by a designed helix-loop-helix motif peptide.
    Razkin J; Nilsson H; Baltzer L
    J Am Chem Soc; 2007 Nov; 129(47):14752-8. PubMed ID: 17985898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent control of bond breaking in amino acid complexes with tailored femtosecond pulses.
    Laarmann T; Shchatsinin I; Singh P; Zhavoronkov N; Gerhards M; Schulz CP; Hertel IV
    J Chem Phys; 2007 Nov; 127(20):201101. PubMed ID: 18052413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The methyl group of N(alpha)(Me)Arg-containing peptides disturbs the active-site geometry of thrombin, impairing efficient cleavage.
    Friedrich R; Steinmetzer T; Huber R; Stürzebecher J; Bode W
    J Mol Biol; 2002 Mar; 316(4):869-74. PubMed ID: 11884127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging methods in amide- and peptide-bond formation.
    Bode JW
    Curr Opin Drug Discov Devel; 2006 Nov; 9(6):765-75. PubMed ID: 17117685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Benzyl Ester Group of Amino Acid Monomers Enhances Substrate Affinity and Broadens the Substrate Specificity of the Enzyme Catalyst in Chemoenzymatic Copolymerization.
    Ageitos JM; Yazawa K; Tateishi A; Tsuchiya K; Numata K
    Biomacromolecules; 2016 Jan; 17(1):314-23. PubMed ID: 26620763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conservation of cis prolyl bonds in proteins during evolution.
    Lorenzen S; Peters B; Goede A; Preissner R; Frömmel C
    Proteins; 2005 Feb; 58(3):589-95. PubMed ID: 15609336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OH radical reactions with phenylalanine in free and peptide forms.
    Galano A; Cruz-Torres A
    Org Biomol Chem; 2008 Feb; 6(4):732-8. PubMed ID: 18264574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of branched beta-carbon dehydro-residues on peptide conformations: syntheses, crystal structures and molecular conformations of two tetrapeptides: (a) N-(benzyloxycarbonyl)-DeltaVal-Leu-DeltaPhe-Leu-OCH3 and (b) N-(benzyloxycarbonyl)-DeltaIle-Ala-DeltaPhe-Ala-OCH3.
    Goel VK; Somvanshi RK; Dey S; Singh TP
    J Pept Res; 2005 Aug; 66(2):68-74. PubMed ID: 16000120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.