These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 11831569)

  • 1. Accelerator-based neutron brachytherapy.
    Song H; Yanch JC; Klinkowstein RE
    Med Phys; 2002 Jan; 29(1):15-25. PubMed ID: 11831569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-phantom dosimetry for the 13C(d,n)14N reaction as a source for accelerator-based BNCT.
    Burlon AA; Kreiner AJ; White SM; Blackburn BW; Gierga DP; Yanch JC
    Med Phys; 2001 May; 28(5):796-803. PubMed ID: 11393475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).
    Capoulat ME; Minsky DM; Kreiner AJ
    Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.
    Blue TE; Yanch JC
    J Neurooncol; 2003; 62(1-2):19-31. PubMed ID: 12749700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements and calculations of thermal neutron fluence rate and neutron energy spectra resulting from moderation of 252Cf fast neutrons: applications for neutron capture therapy.
    Rivard MJ
    Med Phys; 2000 Aug; 27(8):1761-9. PubMed ID: 10984222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I
    Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy.
    Gierga DP; Yanch JC; Shefer RE
    Med Phys; 2000 Jan; 27(1):203-14. PubMed ID: 10659758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental study of the moderator assembly for a low-energy proton accelerator neutron irradiation facility for BNCT.
    Wang CK; Blue TE; Blue JW
    Basic Life Sci; 1990; 54():271-80. PubMed ID: 2176457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the measurement of photo-neutron for15 MV photon beam from medical linear accelerator under different irradiation geometries using passive detectors.
    Thekkedath SC; Raman RG; Musthafa MM; Bakshi AK; Pal R; Dawn S; Kummali AH; Huilgol NG; Selvam TP; Datta D
    J Cancer Res Ther; 2016; 12(2):1060-4. PubMed ID: 27461699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shielding evaluation of a medical linear accelerator vault in preparation for installing a high-dose rate 252Cf remote afterloader.
    Melhus CS; Rivard MJ; Kurkomelis J; Liddle CB; Massé FX
    Radiat Prot Dosimetry; 2005; 113(4):428-37. PubMed ID: 15755770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of an accelerator-based neutron source for neutron capture therapy.
    Terlizzi R; Colonna N; Colangelo P; Maiorana A; Marrone S; Rainò A; Tagliente G; Variale V
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S292-5. PubMed ID: 19406649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of boron neutron capture therapy used neutron source with protons bombarding a thick 9Be target.
    Yue G; Chen J; Song R
    Med Phys; 1997 Jun; 24(6):851-5. PubMed ID: 9198018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microdosimetry of an accelerator based thermal neutron field for Boron Neutron Capture Therapy.
    Selva A; Bellan L; Bianchi A; Giustiniani G; Colautti P; Fagotti E; Pisent A; Conte V
    Appl Radiat Isot; 2022 Apr; 182():110144. PubMed ID: 35168037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dosimetric characteristics of the University of Washington Clinical Neutron Therapy System.
    Moffitt GB; Stewart RD; Sandison GA; Goorley JT; Argento DC; Jevremovic T; Emery R; Wootton LS; Parvathaneni U; Laramore GE
    Phys Med Biol; 2018 May; 63(10):105008. PubMed ID: 29637903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure.
    Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW
    Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.
    Bleuel DL; Donahue RJ; Ludewigt BA; Vujic J
    Med Phys; 1998 Sep; 25(9):1725-34. PubMed ID: 9775379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.