These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11831574)

  • 21. A three-dimensional transport model for determining absorbed fractions of energy for electrons within cortical bone.
    Bouchet LG; Bolch WE
    J Nucl Med; 1999 Dec; 40(12):2115-24. PubMed ID: 10616894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chord-based versus voxel-based methods of electron transport in the skeletal tissues.
    Shah AP; Jokisch DW; Rajon DA; Watchman CJ; Patton PW; Bolch WE
    Med Phys; 2005 Oct; 32(10):3151-9. PubMed ID: 16279069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linear regression model for predicting patient-specific total skeletal spongiosa volume for use in molecular radiotherapy dosimetry.
    Brindle JM; Trindade AA; Shah AP; Jokisch DW; Patton PW; Pichardo JC; Bolch WE
    J Nucl Med; 2006 Nov; 47(11):1875-83. PubMed ID: 17079822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Depth-dependent concentrations of hematopoietic stem cells in the adult skeleton: Implications for active marrow dosimetry.
    Geyer AM; Schwarz BC; O'Reilly SE; Hobbs RF; Sgouros G; Bolch WE
    Med Phys; 2017 Feb; 44(2):747-761. PubMed ID: 28133749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ELECTRON ABSORBED FRACTIONS IN AN IMAGE-BASED MICROSCOPIC SKELETAL DOSIMETRY MODEL OF CHINESE ADULT MALE.
    Gao S; Ren L; Qiu R; Wu Z; Li C; Li J
    Radiat Prot Dosimetry; 2017 Aug; 175(4):450-459. PubMed ID: 28074015
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface area overestimation within three-dimensional digital images and its consequence for skeletal dosimetry.
    Rajon DA; Patton PW; Shah AP; Watchman CJ; Bolch WE
    Med Phys; 2002 May; 29(5):682-93. PubMed ID: 12033563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skeletal dosimetry for external exposures to photons based on microCT images of spongiosa: consideration of voxel resolution, cluster size, and medullary bone surfaces.
    Kramer R; Khoury HJ; Vieira JW; Robson Brown KA
    Med Phys; 2009 Nov; 36(11):5007-16. PubMed ID: 19994510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Skeletal absorbed fractions for electrons in the adult male: considerations of a revised 50-microm definition of the bone endosteum.
    Bolch WE; Shah AP; Watchman CJ; Jokisch DW; Patton PW; Rajon DA; Zankl M; Petoussi-Henss N; Eckerman KF
    Radiat Prot Dosimetry; 2007; 127(1-4):169-73. PubMed ID: 17556345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Absorbed fractions for alpha-particles in tissues of cortical bone.
    Watchman CJ; Bolch WE
    Phys Med Biol; 2009 Oct; 54(19):6009-27. PubMed ID: 19773607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mean skeletal dose factors for beta-particle emitters in human bone. Part II: surface-seeking radionuclides.
    Spiers FW; Beddoe AH; Whitwell JR
    Br J Radiol; 1981 Jun; 54(642):500-4. PubMed ID: 7237029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adipocyte spatial distributions in bone marrow: implications for skeletal dosimetry models.
    Shah AP; Patton PW; Rajon DA; Bolch WE
    J Nucl Med; 2003 May; 44(5):774-83. PubMed ID: 12732680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations.
    Pacilio M; Lanconelli N; Lo MS; Betti M; Montani L; Torres AL; Coca PM
    Med Phys; 2009 May; 36(5):1543-52. PubMed ID: 19544770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculation of beta dosimetry in radiation synovectomy using Monte Carlo simulation (EGS4).
    Johnson LS; Yanch JC
    Med Phys; 1993; 20(3):747-54. PubMed ID: 8350831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biologic dosimetry of bone marrow: induction of micronuclei in reticulocytes after exposure to 32P and 90Y.
    Lenarczyk M; Goddu SM; Rao DV; Howell RW
    J Nucl Med; 2001 Jan; 42(1):162-9. PubMed ID: 11197968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Marrow toxicity of 33P-versus 32P-orthophosphate: implications for therapy of bone pain and bone metastases.
    Goddu SM; Bishayee A; Bouchet LG; Bolch WE; Rao DV; Howell RW
    J Nucl Med; 2000 May; 41(5):941-51. PubMed ID: 10809212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-immunotherapy.
    Wilderman SJ; Roberson PL; Bolch WE; Dewaraja YK
    Phys Med Biol; 2013 Jul; 58(14):4717-31. PubMed ID: 23780474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Response functions for computing absorbed dose to skeletal tissues from photon irradiation--an update.
    Johnson PB; Bahadori AA; Eckerman KF; Lee C; Bolch WE
    Phys Med Biol; 2011 Apr; 56(8):2347-65. PubMed ID: 21427484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methods for the inclusion of shallow marrow and adipose tissue in pathlength-based skeletal dosimetry.
    Jokisch DW; Rajon DA; Patton PW; Bolch WE
    Phys Med Biol; 2011 May; 56(9):2699-713. PubMed ID: 21464530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active bone marrow S-values for the low-energy electron emitter terbium-161 compared to S-values for lutetium-177 and yttrium-90.
    Hemmingsson J; Svensson J; van der Meulen NP; Müller C; Bernhardt P
    EJNMMI Phys; 2022 Sep; 9(1):65. PubMed ID: 36153386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling energy deposition in trabecular spongiosa using the Monte Carlo code PENELOPE.
    Gersh JA; Dingfelder M; Toburen LH
    Health Phys; 2007 Jul; 93(1):47-59. PubMed ID: 17563492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.