These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11831765)

  • 21. On the relationship between radial structure heterogeneities and efficiency of chromatographic columns.
    Gritti F
    J Chromatogr A; 2018 Jan; 1533():112-126. PubMed ID: 29254865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of parallel segmented flow chromatography on the height equivalent to a theoretical plate. I-performance of 4.6mm×30mm columns packed with 3.0μm Hypurity-C18 fully porous particles.
    Gritti F; Guiochon G
    J Chromatogr A; 2013 Jul; 1297():64-76. PubMed ID: 23706347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scalability of pre-packed preparative chromatography columns with different diameters and lengths taking into account extra column effects.
    Schweiger S; Jungbauer A
    J Chromatogr A; 2018 Feb; 1537():66-74. PubMed ID: 29373126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns.
    Reising AE; Godinho JM; Jorgenson JW; Tallarek U
    J Chromatogr A; 2017 Jun; 1504():71-82. PubMed ID: 28511930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-particle frits for packed capillary columns in electrochromatographic use.
    Sun J; Yang S; Cheng H; Wang Y; Liu J
    J Chromatogr A; 2019 Jun; 1595():221-229. PubMed ID: 30826077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography.
    Motokawa M; Kobayashi H; Ishizuka N; Minakuchi H; Nakanishi K; Jinnai H; Hosoya K; Ikegami T; Tanaka N
    J Chromatogr A; 2002 Jun; 961(1):53-63. PubMed ID: 12186391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visualization of bed compression in an axial compression liquid chromatography column.
    Shallike RA; Wong V; Broyles BS; Guiochon G
    J Chromatogr A; 2002 Nov; 977(2):213-23. PubMed ID: 12456111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. X-ray computed tomography of packed bed chromatography columns for three dimensional imaging and analysis.
    Johnson TF; Levison PR; Shearing PR; Bracewell DG
    J Chromatogr A; 2017 Mar; 1487():108-115. PubMed ID: 28129938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of dual gradient column in liquid chromatography.
    Oda T; Kitagawa S; Ohtani H
    J Chromatogr A; 2006 Feb; 1105(1-2):154-8. PubMed ID: 16185701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel technology for packing and unpacking pilot and production scale columns.
    Hofmann M
    J Chromatogr A; 1998 Feb; 796(1):75-80. PubMed ID: 9513283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of pressure on the properties of chromatographic columns. II. The column hold-up volume.
    Gritti F; Martin M; Guiochon G
    J Chromatogr A; 2005 Apr; 1070(1-2):13-22. PubMed ID: 15861783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental evidence of the influence of the surface chemistry of the packing material on the column pressure drop in reverse-phase liquid chromatography.
    Gritti F; Guiochon G
    J Chromatogr A; 2006 Dec; 1136(2):192-201. PubMed ID: 17046011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mathematical modelling and evaluation of performance of cuboid packed-bed devices for chromatographic separations.
    Ghosh R; Chen G
    J Chromatogr A; 2017 Sep; 1515():138-145. PubMed ID: 28801045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The current revolution in column technology: how it began, where is it going?
    Gritti F; Guiochon G
    J Chromatogr A; 2012 Mar; 1228():2-19. PubMed ID: 21872874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficiency gain limits of the parallel segmented inlet and outlet flow concept in analytical liquid chromatography columns suffering from radial transcolumn packing density gradients.
    Broeckhoven K; Desmet G
    J Chromatogr A; 2012 Oct; 1258():66-75. PubMed ID: 22939209
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 1.1 μm superficially porous particles for liquid chromatography: part II: column packing and chromatographic performance.
    Blue LE; Jorgenson JW
    J Chromatogr A; 2015 Feb; 1380():71-80. PubMed ID: 25578043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Behavior of packing materials in axially compressed chromatographic columns.
    Cherrak DE; Al-Bokari M; Drumm EC; Guiochon G
    J Chromatogr A; 2002 Jan; 943(1):15-31. PubMed ID: 11820276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the uniformity of analytical-size chromatography columns prepared by the downward packing of particulate slurries.
    Wong V; Shalliker RA; Guiochon G
    Anal Chem; 2004 May; 76(9):2601-8. PubMed ID: 15117204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the performance of conically shaped columns: Theory and practice.
    Gritti F; Belanger J; Izzo G; Leveille W
    J Chromatogr A; 2019 May; 1593():34-46. PubMed ID: 30704777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mass transfer mechanism in liquid chromatography columns packed with shell particles: would there be an optimum shell structure?
    Gritti F; Guiochon G
    J Chromatogr A; 2010 Dec; 1217(52):8167-80. PubMed ID: 21081233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.