These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 11831791)

  • 21. A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids.
    Tejedor Sastre MT; Vanhille C
    Ultrason Sonochem; 2017 Jan; 34():881-888. PubMed ID: 27773316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comment on "Resonant acoustic scattering by swimbladder-bearing fish" [J. Acoust. Soc. Am. 64, 571-580 (1978)] (L).
    Baik K
    J Acoust Soc Am; 2013 Jan; 133(1):5-8. PubMed ID: 23297876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic localization in weakly compressible elastic media containing random air bubbles.
    Liang B; Cheng JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016605. PubMed ID: 17358273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.
    Louisnard O; Cogné C; Labouret S; Montes-Quiroz W; Peczalski R; Baillon F; Espitalier F
    Ultrason Sonochem; 2015 Sep; 26():186-192. PubMed ID: 25800984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical models for the study of the nonlinear frequency mixing in two and three-dimensional resonant cavities filled with a bubbly liquid.
    Tejedor Sastre MT; Vanhille C
    Ultrason Sonochem; 2017 Nov; 39():597-610. PubMed ID: 28732985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sound propagation in a monodisperse bubble cloud: from the crystal to the glass.
    Devaud M; Hocquet T; Leroy V
    Eur Phys J E Soft Matter; 2010 May; 32(1):13-23. PubMed ID: 20490600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear Maximization of the Sum-Frequency Component from Two Ultrasonic Signals in a Bubbly Liquid.
    Tejedor Sastre MT; Vanhille C
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sub-wavelength focusing of acoustic waves in bubbly media.
    Ammari H; Fitzpatrick B; Gontier D; Lee H; Zhang H
    Proc Math Phys Eng Sci; 2017 Dec; 473(2208):20170469. PubMed ID: 29290733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Higher-order acoustic diffraction by edges of finite thickness.
    Chu D; Stanton TK; Pierce AD
    J Acoust Soc Am; 2007 Dec; 122(6):3177-94. PubMed ID: 18247730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures.
    Zhang Y; Guo Z; Gao Y; Du X
    Ultrason Sonochem; 2018 Jan; 40(Pt B):40-45. PubMed ID: 28389057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and optimization of acoustic bubble structures at high frequencies.
    Lee J; Ashokkumar M; Yasui K; Tuziuti T; Kozuka T; Towata A; Iida Y
    Ultrason Sonochem; 2011 Jan; 18(1):92-8. PubMed ID: 20452265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A method to account for acoustic microstreaming when predicting bubble growth rates produced by rectified diffusion.
    Church CC
    J Acoust Soc Am; 1988 Nov; 84(5):1758-64. PubMed ID: 3209776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The acoustics of diagnostic microbubbles: dissipative effects and heat deposition.
    Hilgenfeldt S; Lohse D
    Ultrasonics; 2000 Mar; 38(1-8):99-104. PubMed ID: 10829637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlinear wave interactions in bubble layers.
    Karpov S; Prosperetti A; Ostrovsky L
    J Acoust Soc Am; 2003 Mar; 113(3):1304-16. PubMed ID: 12656365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic integrated extinction.
    Norris AN
    Proc Math Phys Eng Sci; 2015 May; 471(2177):20150008. PubMed ID: 27547100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissipation of ultrasonic wave propagation in bubbly liquids considering the effect of compressibility to the first order of acoustical Mach number.
    Jamshidi R; Brenner G
    Ultrasonics; 2013 Apr; 53(4):842-8. PubMed ID: 23290824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-frequency sonoreactor characterisation in the frequency domain using a semi-empirical bubbly liquid model.
    Chu JK; Tiong TJ; Chong S; Asli UA; Yap YH
    Ultrason Sonochem; 2021 Dec; 80():105818. PubMed ID: 34781044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor.
    Dogan H; Popov V
    Ultrason Sonochem; 2016 May; 30():87-97. PubMed ID: 26611813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model.
    Lebon GSB; Tzanakis I; Djambazov G; Pericleous K; Eskin DG
    Ultrason Sonochem; 2017 Jul; 37():660-668. PubMed ID: 28427680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.