BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 11831802)

  • 1. Effects of reversible noise exposure on the suppression tuning of rabbit distortion-product otoacoustic emissions.
    Howard MA; Stagner BB; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):285-96. PubMed ID: 11831802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of loop diuretics on the suppression tuning of distortion-product otoacoustic emissions in rabbits.
    Martin GK; Jassir D; Stagner BB; Lonsbury-Martin BL
    J Acoust Soc Am; 1998 Aug; 104(2 Pt 1):972-83. PubMed ID: 9714917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distortion product otoacoustic emission suppression tuning curves in human adults and neonates.
    Abdala C; Sininger YS; Ekelid M; Zeng FG
    Hear Res; 1996 Sep; 98(1-2):38-53. PubMed ID: 8880180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression tuning in noise-exposed rabbits.
    Howard MA; Stagner BB; Foster PK; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 2003 Jul; 114(1):279-93. PubMed ID: 12880041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating cochlear function and the effects of noise exposure in the B6.CAST+Ahl mouse with distortion product otoacoustic emissions.
    Vázquez AE; Jimenez AM; Martin GK; Luebke AE; Lonsbury-Martin BL
    Hear Res; 2004 Aug; 194(1-2):87-96. PubMed ID: 15276680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency responses of two- and three-tone distortion product otoacoustic emissions in Mongolian gerbils.
    Mills DM
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2586-602. PubMed ID: 10830382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The shape of 2f1-f2 suppression tuning curves reflects basilar membrane specializations in the mustached bat, Pteronotus parnellii.
    Frank G; Kössl M
    Hear Res; 1995 Mar; 83(1-2):151-60. PubMed ID: 7607981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations.
    Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL
    J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distortion-product otoacoustic emission suppression growth in normal and noise-exposed rabbits.
    Porter CA; Martin GK; Stagner BB; Lonsbury-Martin BL
    J Acoust Soc Am; 2006 Aug; 120(2):884-900. PubMed ID: 16938977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of various durations of noise exposure on auditory brainstem response, distortion product otoacoustic emissions and transient evoked otoacoustic emissions in rats.
    Fraenkel R; Freeman S; Sohmer H
    Audiol Neurootol; 2001; 6(1):40-9. PubMed ID: 11173774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Suppression tuning characteristics of the 2f1-f2 distortion product in cochlear microphonics and otoacoustic emissions].
    Fujimura K; Yoshida M; Makishima K
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Aug; 100(8):839-45. PubMed ID: 9293764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of cochlear frequency resolution in the human auditory system.
    Abdala C; Sininger YS
    Ear Hear; 1996 Oct; 17(5):374-85. PubMed ID: 8909885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f(2). II. Findings in humans.
    Martin GK; Villasuso EI; Stagner BB; Lonsbury-Martin BL
    Hear Res; 2003 Mar; 177(1-2):111-22. PubMed ID: 12618323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DPOAE suppression tuning: cochlear immaturity in premature neonates or auditory aging in normal-hearing adults?
    Abdala C
    J Acoust Soc Am; 2001 Dec; 110(6):3155-62. PubMed ID: 11785816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cochlear sensitivity in the lesser spear-nosed bat, Phyllostomus discolor.
    Wittekindt A; Drexl M; Kössl M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):31-6. PubMed ID: 15378333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of distortion-product otoacoustic emissions in humans to tonal over-exposure: time course of recovery and effects of lowering L2.
    Sutton LA; Lonsbury-Martin BL; Martin GK; Whitehead ML
    Hear Res; 1994 May; 75(1-2):161-74. PubMed ID: 8071143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression tuning of spontaneous otoacoustic emissions in the barn owl (Tyto alba).
    Engler S; Köppl C; Manley GA; de Kleine E; van Dijk P
    Hear Res; 2020 Jan; 385():107835. PubMed ID: 31710933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of continuous versus interrupted noise exposures on distortion product otoacoustic emissions in guinea pigs.
    Chang KW; Norton SJ
    Hear Res; 1996 Jul; 96(1-2):1-12. PubMed ID: 8817301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturation of the human cochlear amplifier: distortion product otoacoustic emission suppression tuning curves recorded at low and high primary tone levels.
    Abdala C
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1465-76. PubMed ID: 11572357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.