BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 11831919)

  • 1. Spatial and temporal processing of threshold data for detection of progressive glaucomatous visual field loss.
    Spry PG; Johnson CA; Bates AB; Turpin A; Chauhan BC
    Arch Ophthalmol; 2002 Feb; 120(2):173-80. PubMed ID: 11831919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effective Dynamic Ranges for Glaucomatous Visual Field Progression With Standard Automated Perimetry and Stimulus Sizes III and V.
    Wall M; Zamba GKD; Artes PH
    Invest Ophthalmol Vis Sci; 2018 Jan; 59(1):439-445. PubMed ID: 29356822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pointwise linear regression analysis for detection of visual field progression with absolute versus corrected threshold sensitivities.
    Manassakorn A; Nouri-Mahdavi K; Koucheki B; Law SK; Caprioli J
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):2896-903. PubMed ID: 16799031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity differences between real-patient and computer-stimulated visual fields.
    Vesti E; Spry PG; Chauhan BC; Johnson CA
    J Glaucoma; 2002 Feb; 11(1):35-45. PubMed ID: 11821688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring glaucomatous visual field progression: the effect of a novel spatial filter.
    Strouthidis NG; Scott A; Viswanathan AC; Crabb DP; Garway-Heath DF
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):251-7. PubMed ID: 17197540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity and specificity of the Swedish interactive threshold algorithm for glaucomatous visual field defects.
    Budenz DL; Rhee P; Feuer WJ; McSoley J; Johnson CA; Anderson DR
    Ophthalmology; 2002 Jun; 109(6):1052-8. PubMed ID: 12045043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of longitudinal threshold visual field data.
    Spry PG; Bates AB; Johnson CA; Chauhan BC
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2192-200. PubMed ID: 10892862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early Detection of Glaucomatous Visual Field Progression Using Pointwise Linear Regression With Binomial Test in the Central 10 Degrees.
    Asano S; Murata H; Matsuura M; Fujino Y; Asaoka R
    Am J Ophthalmol; 2019 Mar; 199():140-149. PubMed ID: 30465746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the prediction of visual field progression in glaucoma using spatial processing.
    Crabb DP; Fitzke FW; McNaught AI; Edgar DF; Hitchings RA
    Ophthalmology; 1997 Mar; 104(3):517-24. PubMed ID: 9082283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of different pointwise linear regression methods for determining visual field progression.
    Gardiner SK; Crabb DP
    Invest Ophthalmol Vis Sci; 2002 May; 43(5):1400-7. PubMed ID: 11980853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refinement of pointwise linear regression criteria for determining glaucoma progression.
    Kummet CM; Zamba KD; Doyle CK; Johnson CA; Wall M
    Invest Ophthalmol Vis Sci; 2013 Sep; 54(9):6234-41. PubMed ID: 23908183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pointwise linear regression for evaluation of visual field outcomes and comparison with the advanced glaucoma intervention study methods.
    Nouri-Mahdavi K; Caprioli J; Coleman AL; Hoffman D; Gaasterland D
    Arch Ophthalmol; 2005 Feb; 123(2):193-9. PubMed ID: 15710815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining 10-2 visual field progression criteria: exploratory and confirmatory factor analysis using pointwise linear regression.
    de Moraes CG; Song C; Liebmann JM; Simonson JL; Furlanetto RL; Ritch R
    Ophthalmology; 2014 Mar; 121(3):741-9. PubMed ID: 24290806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating the efficacy of the binomial pointwise linear regression method to detect glaucoma progression with multicentral database.
    Asano S; Murata H; Matsuura M; Fujino Y; Miki A; Tanito M; Mizoue S; Mori K; Suzuki K; Yamashita T; Kashiwagi K; Shoji N; Zangwill LM; Asaoka R
    Br J Ophthalmol; 2020 Apr; 104(4):569-574. PubMed ID: 31272952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What reduction in standard automated perimetry variability would improve the detection of visual field progression?
    Turpin A; McKendrick AM
    Invest Ophthalmol Vis Sci; 2011 May; 52(6):3237-45. PubMed ID: 21357405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of glaucomatous visual field defects using standard full threshold and Swedish interactive threshold algorithms.
    Budenz DL; Rhee P; Feuer WJ; McSoley J; Johnson CA; Anderson DR
    Arch Ophthalmol; 2002 Sep; 120(9):1136-41. PubMed ID: 12215086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of focal lamina cribrosa defect on glaucomatous visual field progression.
    Faridi OS; Park SC; Kabadi R; Su D; De Moraes CG; Liebmann JM; Ritch R
    Ophthalmology; 2014 Aug; 121(8):1524-30. PubMed ID: 24697910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multisampling suprathreshold perimetry: a comparison with conventional suprathreshold and full-threshold strategies by computer simulation.
    Artes PH; Henson DB; Harper R; McLeod D
    Invest Ophthalmol Vis Sci; 2003 Jun; 44(6):2582-7. PubMed ID: 12766060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study.
    Yu M; Lin C; Weinreb RN; Lai G; Chiu V; Leung CK
    Ophthalmology; 2016 Jun; 123(6):1201-10. PubMed ID: 27001534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optic disc progression and rates of visual field change in treated glaucoma.
    De Moraes CG; Liebmann JM; Park SC; Teng CC; Nemiroff J; Tello C; Ritch R
    Acta Ophthalmol; 2013 Mar; 91(2):e86-91. PubMed ID: 23356423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.