These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 11832224)

  • 1. An instructive role for retinal waves in the development of retinogeniculate connectivity.
    Stellwagen D; Shatz CJ
    Neuron; 2002 Jan; 33(3):357-67. PubMed ID: 11832224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition in retinogeniculate patterning driven by spontaneous activity.
    Penn AA; Riquelme PA; Feller MB; Shatz CJ
    Science; 1998 Mar; 279(5359):2108-12. PubMed ID: 9516112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eye-specific retinogeniculate segregation proceeds normally following disruption of patterned spontaneous retinal activity.
    Speer CM; Sun C; Liets LC; Stafford BK; Chapman B; Cheng HJ
    Neural Dev; 2014 Nov; 9():25. PubMed ID: 25377639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of spontaneous retinal activity before eye opening in the maturation of form and function in the retinogeniculate pathway of the ferret.
    Cook PM; Prusky G; Ramoa AS
    Vis Neurosci; 1999; 16(3):491-501. PubMed ID: 10349970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular development of the lateral geniculate nucleus in the absence of retinal waves during the time of retinal axon eye-specific segregation.
    Iwai L; Kawasaki H
    Neuroscience; 2009 Apr; 159(4):1326-37. PubMed ID: 19409202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoupling eye-specific segregation from lamination in the lateral geniculate nucleus.
    Huberman AD; Stellwagen D; Chapman B
    J Neurosci; 2002 Nov; 22(21):9419-29. PubMed ID: 12417667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching retinogeniculate axon laterality leads to normal targeting but abnormal eye-specific segregation that is activity dependent.
    Rebsam A; Petros TJ; Mason CA
    J Neurosci; 2009 Nov; 29(47):14855-63. PubMed ID: 19940181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in v1.
    Huberman AD; Speer CM; Chapman B
    Neuron; 2006 Oct; 52(2):247-54. PubMed ID: 17046688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation.
    Ziburkus J; Guido W
    J Neurophysiol; 2006 Nov; 96(5):2775-84. PubMed ID: 16899631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits.
    Xu HP; Burbridge TJ; Ye M; Chen M; Ge X; Zhou ZJ; Crair MC
    J Neurosci; 2016 Mar; 36(13):3871-86. PubMed ID: 27030771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina.
    Cang J; RenterĂ­a RC; Kaneko M; Liu X; Copenhagen DR; Stryker MP
    Neuron; 2005 Dec; 48(5):797-809. PubMed ID: 16337917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epibatidine blocks eye-specific segregation in ferret dorsal lateral geniculate nucleus during stage III retinal waves.
    Davis ZW; Sun C; Derieg B; Chapman B; Cheng HJ
    PLoS One; 2015; 10(3):e0118783. PubMed ID: 25794280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional composition of the developing retinogeniculate pathway in the mouse.
    Jaubert-Miazza L; Green E; Lo FS; Bui K; Mills J; Guido W
    Vis Neurosci; 2005; 22(5):661-76. PubMed ID: 16332277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epibatidine application in vitro blocks retinal waves without silencing all retinal ganglion cell action potentials in developing retina of the mouse and ferret.
    Sun C; Speer CM; Wang GY; Chapman B; Chalupa LM
    J Neurophysiol; 2008 Dec; 100(6):3253-63. PubMed ID: 18922954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Necessity for afferent activity to maintain eye-specific segregation in ferret lateral geniculate nucleus.
    Chapman B
    Science; 2000 Mar; 287(5462):2479-82. PubMed ID: 10741966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse.
    Chandrasekaran AR; Plas DT; Gonzalez E; Crair MC
    J Neurosci; 2005 Jul; 25(29):6929-38. PubMed ID: 16033903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing Spontaneous Retinal Activity before Eye Opening Accelerates the Development of Geniculate Receptive Fields.
    Davis ZW; Chapman B; Cheng HJ
    J Neurosci; 2015 Oct; 35(43):14612-23. PubMed ID: 26511250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monocular enucleation alters retinal waves in the surviving eye.
    Failor SW; Ng A; Cheng HJ
    Neural Dev; 2018 Mar; 13(1):4. PubMed ID: 29573745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal waves regulate afferent terminal targeting in the early visual pathway.
    Failor S; Chapman B; Cheng HJ
    Proc Natl Acad Sci U S A; 2015 Jun; 112(22):E2957-66. PubMed ID: 26038569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye-specific retinogeniculate segregation independent of normal neuronal activity.
    Huberman AD; Wang GY; Liets LC; Collins OA; Chapman B; Chalupa LM
    Science; 2003 May; 300(5621):994-8. PubMed ID: 12738869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.