These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 11832587)

  • 1. Analysis of polynuclear aromatic hydrocarbons via the Voronoi tessellation approach: classification of atom types using artificial neural networks.
    Christensen SW
    Acta Crystallogr A; 2002 Mar; 58(Pt 2):171-9. PubMed ID: 11832587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure characterization and predictability by Voronoi analysis.
    Christensen SW; Thomas NW
    Acta Crystallogr A; 1999 Sep; 55(Pt 5):811-820. PubMed ID: 10927291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of protein surfaces, volumes and atom-atom contacts using a constrained Voronoi procedure.
    McConkey BJ; Sobolev V; Edelman M
    Bioinformatics; 2002 Oct; 18(10):1365-73. PubMed ID: 12376381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of random forests method to predict the retention indices of some polycyclic aromatic hydrocarbons.
    Goudarzi N; Shahsavani D; Emadi-Gandaghi F; Chamjangali MA
    J Chromatogr A; 2014 Mar; 1333():25-31. PubMed ID: 24529953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the genotoxicity of polycyclic aromatic compounds from molecular structure with different classifiers.
    He L; Jurs PC; Custer LL; Durham SK; Pearl GM
    Chem Res Toxicol; 2003 Dec; 16(12):1567-80. PubMed ID: 14680371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking and QSAR comparative studies of polycyclic aromatic hydrocarbons and other procarcinogen interactions with cytochromes P450 1A1 and 1B1.
    Gonzalez J; Marchand-Geneste N; Giraudel JL; Shimada T
    SAR QSAR Environ Res; 2012 Jan; 23(1-2):87-109. PubMed ID: 22150106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Biodegradability for Polycyclic Aromatic Hydrocarbons Using Various In Silico Modeling Methods.
    Cheng G; Sun L; Fu J
    Arch Environ Contam Toxicol; 2018 Nov; 75(4):607-615. PubMed ID: 30178131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voronoi and Voronoi-related tessellations in studies of protein structure and interaction.
    Poupon A
    Curr Opin Struct Biol; 2004 Apr; 14(2):233-41. PubMed ID: 15093839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting and extracting clusters in atom probe data: a simple, automated method using Voronoi cells.
    Felfer P; Ceguerra AV; Ringer SP; Cairney JM
    Ultramicroscopy; 2015 Mar; 150():30-36. PubMed ID: 25497494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GC/MS analysis of polynuclear aromatic hydrocarbons in sediment samples from the Niger Delta region.
    Anyakora C; Ogbeche A; Palmer P; Coker H; Ukpo G; Ogah C
    Chemosphere; 2005 Aug; 60(7):990-7. PubMed ID: 15992605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of backpropagation artificial neural network prediction model for the PAH bioremediation of polluted soil.
    Olawoyin R
    Chemosphere; 2016 Oct; 161():145-150. PubMed ID: 27424056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enumeration of the constitutional isomers of environmentally relevant substituted polycyclic aromatic compounds.
    Johnson W; Idowu I; Francisco O; Marvin C; Thomas PJ; Stetefeld J; Tomy GT
    Chemosphere; 2018 Jul; 202():9-16. PubMed ID: 29567615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Personal and ambient exposures to air toxics in Camden, New Jersey.
    Lioy PJ; Fan Z; Zhang J; Georgopoulos P; Wang SW; Ohman-Strickland P; Wu X; Zhu X; Harrington J; Tang X; Meng Q; Jung KH; Kwon J; Hernandez M; Bonnano L; Held J; Neal J;
    Res Rep Health Eff Inst; 2011 Aug; (160):3-127; discussion 129-51. PubMed ID: 22097188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of polynuclear aromatic hydrocarbons present in asphaltenes from Mexican oil. A possible environmental risk.
    Dieck T; Acosta AS; Villegas-Navarro A
    Arch Med Res; 1995; 26(4):445-7. PubMed ID: 8555743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative modeling approaches for personal exposure to particle-associated PAH.
    Aquilina NJ; Delgado-Saborit JM; Gauci AP; Baker S; Meddings C; Harrison RM
    Environ Sci Technol; 2010 Dec; 44(24):9370-6. PubMed ID: 21090571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of 15 polycyclic aromatic hydrocarbons in aquatic products by solid-phase extraction and GC-MS.
    Liu Q; Guo Y; Sun X; Hao Q; Cheng X; Zhang L
    J Sep Sci; 2018 May; 41(10):2188-2196. PubMed ID: 29469237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices.
    Pan Y; Jiang J; Wang R; Cao H; Zhao J
    J Hazard Mater; 2008 Sep; 157(2-3):510-7. PubMed ID: 18280036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An algorithm for three-dimensional Voronoi S-network.
    Medvedev NN; Voloshin VP; Luchnikov VA; Gavrilova ML
    J Comput Chem; 2006 Nov; 27(14):1676-92. PubMed ID: 16900490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analytical method for computing atomic contact areas in biomolecules.
    Mach P; Koehl P
    J Comput Chem; 2013 Jan; 34(2):105-20. PubMed ID: 22965816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of lipid surface area in protein-membrane systems combining Voronoi tessellation and Monte Carlo integration methods.
    Mori T; Ogushi F; Sugita Y
    J Comput Chem; 2012 Jan; 33(3):286-93. PubMed ID: 22102317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.