BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 11832950)

  • 1. RanGAP mediates GTP hydrolysis without an arginine finger.
    Seewald MJ; Körner C; Wittinghofer A; Vetter IR
    Nature; 2002 Feb; 415(6872):662-6. PubMed ID: 11832950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyr39 of ran preserves the Ran.GTP gradient by inhibiting GTP hydrolysis.
    Brucker S; Gerwert K; Kötting C
    J Mol Biol; 2010 Aug; 401(1):1-6. PubMed ID: 20609434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The GTPase-activating protein Rap1GAP uses a catalytic asparagine.
    Daumke O; Weyand M; Chakrabarti PP; Vetter IR; Wittinghofer A
    Nature; 2004 May; 429(6988):197-201. PubMed ID: 15141215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport.
    Vetter IR; Nowak C; Nishimoto T; Kuhlmann J; Wittinghofer A
    Nature; 1999 Mar; 398(6722):39-46. PubMed ID: 10078529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim.
    Rose A; Meier I
    Proc Natl Acad Sci U S A; 2001 Dec; 98(26):15377-82. PubMed ID: 11752475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp.
    Chook YM; Blobel G
    Nature; 1999 May; 399(6733):230-7. PubMed ID: 10353245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis unifying diverse GTP hydrolysis mechanisms.
    Anand B; Majumdar S; Prakash B
    Biochemistry; 2013 Feb; 52(6):1122-30. PubMed ID: 23293872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras.
    Scheffzek K; Lautwein A; Kabsch W; Ahmadian MR; Wittinghofer A
    Nature; 1996 Dec; 384(6609):591-6. PubMed ID: 8955277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization of the Ran-RanBP1-RanGAP system: are RanBP proteins and the acidic tail of RanGAP required for the Ran-RanGAP GTPase reaction?
    Seewald MJ; Kraemer A; Farkasovsky M; Körner C; Wittinghofer A; Vetter IR
    Mol Cell Biol; 2003 Nov; 23(22):8124-36. PubMed ID: 14585972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Arabidopsis Ran-binding protein, AtRanBP1c, is a co-activator of Ran GTPase-activating protein and requires the C-terminus for its cytoplasmic localization.
    Kim SH; Roux SJ
    Planta; 2003 Apr; 216(6):1047-52. PubMed ID: 12687374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of proteins that interact with the cell-cycle regulatory protein Ran/TC4.
    Coutavas E; Ren M; Oppenheim JD; D'Eustachio P; Rush MG
    Nature; 1993 Dec; 366(6455):585-7. PubMed ID: 8255297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational states of the nuclear GTP-binding protein Ran and its complexes with the exchange factor RCC1 and the effector protein RanBP1.
    Geyer M; Assheuer R; Klebe C; Kuhlmann J; Becker J; Wittinghofer A; Kalbitzer HR
    Biochemistry; 1999 Aug; 38(35):11250-60. PubMed ID: 10471274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP.
    Rittinger K; Walker PA; Eccleston JF; Nurmahomed K; Owen D; Laue E; Gamblin SJ; Smerdon SJ
    Nature; 1997 Aug; 388(6643):693-7. PubMed ID: 9262406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ran-binding protein 1 (RanBP1) forms a ternary complex with Ran and karyopherin beta and reduces Ran GTPase-activating protein (RanGAP) inhibition by karyopherin beta.
    Lounsbury KM; Macara IG
    J Biol Chem; 1997 Jan; 272(1):551-5. PubMed ID: 8995296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and biochemical characterization of the Importin-beta.Ran.GTP.RanBD1 complex.
    Sarić M; Zhao X; Körner C; Nowak C; Kuhlmann J; Vetter IR
    FEBS Lett; 2007 Apr; 581(7):1369-76. PubMed ID: 17359978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into the GTPase domain of Escherichia coli MnmE protein.
    Monleón D; Martínez-Vicente M; Esteve V; Yim L; Prado S; Armengod ME; Celda B
    Proteins; 2007 Feb; 66(3):726-39. PubMed ID: 17143896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The acidic C-terminal domain of rna1p is required for the binding of Ran.GTP and for RanGAP activity.
    Haberland J; Becker J; Gerke V
    J Biol Chem; 1997 Sep; 272(39):24717-26. PubMed ID: 9305944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the metal ion in the p21ras catalysed GTP-hydrolysis: Mn2+ versus Mg2+.
    Schweins T; Scheffzek K; Assheuer R; Wittinghofer A
    J Mol Biol; 1997 Mar; 266(4):847-56. PubMed ID: 9102473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.
    Ghosh A; Praefcke GJ; Renault L; Wittinghofer A; Herrmann C
    Nature; 2006 Mar; 440(7080):101-4. PubMed ID: 16511497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue.
    Rittinger K; Walker PA; Eccleston JF; Smerdon SJ; Gamblin SJ
    Nature; 1997 Oct; 389(6652):758-62. PubMed ID: 9338791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.