These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11835137)

  • 41. Role of wet experiment design in data generation: from in vivo to in silico and back.
    Cánovas M; Bernal V; Sevilla A; Iborra JL
    In Silico Biol; 2007; 7(2 Suppl):S3-16. PubMed ID: 17822388
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Response of Bacillus subtilis to high osmolarity: uptake of carnitine, crotonobetaine and γ-butyrobetaine via the ABC transport system OpuC.
    Kappes RM; Bremer E
    Microbiology (Reading); 1998 Jan; 144(1):83-90. PubMed ID: 33757219
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A possible role of ProP, ProU and CaiT in osmoprotection of Escherichia coli by carnitine.
    Verheul A; Wouters JA; Rombouts FM; Abee T
    J Appl Microbiol; 1998 Dec; 85(6):1036-46. PubMed ID: 9871325
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Reduction of crotonobetaine and D-carnitine to gamma-butyrobetaine, and the metabolism of L-carnitine in the mouse and rat].
    Seim H; Strack E
    Hoppe Seylers Z Physiol Chem; 1980 Jul; 361(7):1059-67. PubMed ID: 7409744
    [No Abstract]   [Full Text] [Related]  

  • 45. Respirometric evaluation and modeling of glucose utilization by Escherichia coli under aerobic and mesophilic cultivation conditions.
    Insel G; Celikyilmaz G; Ucisik-Akkaya E; Yesiladali K; Cakar ZP; Tamerler C; Orhon D
    Biotechnol Bioeng; 2007 Jan; 96(1):94-105. PubMed ID: 16937401
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (Succinate-ubiquinone oxidoreductase) and fumarate reductase (Menaquinol-fumarate oxidoreductase) from Escherichia coli.
    Maklashina E; Cecchini G
    Arch Biochem Biophys; 1999 Sep; 369(2):223-32. PubMed ID: 10486141
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimization of bioreactor using metabolic control analysis approach.
    Konde KS; Modak JM
    Biotechnol Prog; 2007; 23(2):370-80. PubMed ID: 17330959
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of malate dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen, carbon, and heme availability.
    Park SJ; Cotter PA; Gunsalus RP
    J Bacteriol; 1995 Nov; 177(22):6652-6. PubMed ID: 7592446
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Butyrate production under aerobic growth conditions by engineered Escherichia coli.
    Kataoka N; Vangnai AS; Pongtharangkul T; Yakushi T; Matsushita K
    J Biosci Bioeng; 2017 May; 123(5):562-568. PubMed ID: 28089378
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of betaine supplementation on L-threonine fed-batch fermentation by Escherichia coli.
    Su Y; Guo QQ; Wang S; Zhang X; Wang J
    Bioprocess Biosyst Eng; 2018 Oct; 41(10):1509-1518. PubMed ID: 30062600
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic modeling of plasmid bioproduction in Escherichia coli DH5α cultures over different carbon-source compositions.
    Lopes MB; Martins G; Calado CR
    J Biotechnol; 2014 Sep; 186():38-48. PubMed ID: 24998768
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design of a system for the control of low dissolved oxygen concentrations: critical oxygen concentrations for Azotobacter vinelandii and Escherichia coli.
    Chen J; Tannahill AL; Shuler ML
    Biotechnol Bioeng; 1985 Feb; 27(2):151-5. PubMed ID: 11540938
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anaerobic Cysteine Degradation and Potential Metabolic Coordination in Salmonella enterica and Escherichia coli.
    Loddeke M; Schneider B; Oguri T; Mehta I; Xuan Z; Reitzer L
    J Bacteriol; 2017 Aug; 199(16):. PubMed ID: 28607157
    [No Abstract]   [Full Text] [Related]  

  • 55. Production of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid by utilizing crude glycerol as sole carbon source in engineered Escherichia coli expressing BVMO-ADH-FadL.
    Sudheer PDVN; Seo D; Kim EJ; Chauhan S; Chunawala JR; Choi KY
    Enzyme Microb Technol; 2018 Dec; 119():45-51. PubMed ID: 30243386
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient anaerobic production of succinate from glycerol in engineered Escherichia coli by using dual carbon sources and limiting oxygen supply in preceding aerobic culture.
    Li Q; Huang B; Wu H; Li Z; Ye Q
    Bioresour Technol; 2017 May; 231():75-84. PubMed ID: 28196782
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors.
    Unden G; Bongaerts J
    Biochim Biophys Acta; 1997 Jul; 1320(3):217-34. PubMed ID: 9230919
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments.
    Iuchi S; Weiner L
    J Biochem; 1996 Dec; 120(6):1055-63. PubMed ID: 9010748
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Reduction of L-carnitine to gamma-butyrobetaine by Escherichia coli].
    Seim H; Kleber HP; Strack E
    Z Allg Mikrobiol; 1979; 19(10):753-8. PubMed ID: 398096
    [No Abstract]   [Full Text] [Related]  

  • 60. DcuA of aerobically grown Escherichia coli serves as a nitrogen shuttle (L-aspartate/fumarate) for nitrogen uptake.
    Strecker A; Schubert C; Zedler S; Steinmetz P; Unden G
    Mol Microbiol; 2018 Sep; 109(6):801-811. PubMed ID: 29995997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.