These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11835144)

  • 1. Substrate inhibition mode of omega-transaminase from Vibrio fluvialis JS17 is dependent on the chirality of substrate.
    Shin JS; Kim BG
    Biotechnol Bioeng; 2002 Mar; 77(7):832-7. PubMed ID: 11835144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the omega-transaminases from different microorganisms and application to production of chiral amines.
    Shin JS; Kim BG
    Biosci Biotechnol Biochem; 2001 Aug; 65(8):1782-8. PubMed ID: 11577718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification, characterization, and molecular cloning of a novel amine:pyruvate transaminase from Vibrio fluvialis JS17.
    Shin JS; Yun H; Jang JW; Park I; Kim BG
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):463-71. PubMed ID: 12687298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of enrichment culture for directed evolution of the Vibrio fluvialis JS17 omega-transaminase, which is resistant to product inhibition by aliphatic ketones.
    Yun H; Hwang BY; Lee JH; Kim BG
    Appl Environ Microbiol; 2005 Aug; 71(8):4220-4. PubMed ID: 16085806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Necessary and sufficient conditions for the asymmetric synthesis of chiral amines using ω-aminotransferases.
    Seo JH; Kyung D; Joo K; Lee J; Kim BG
    Biotechnol Bioeng; 2011 Feb; 108(2):253-63. PubMed ID: 20824676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural dynamics of the transaminase active site revealed by the crystal structure of a co-factor free omega-transaminase from Vibrio fluvialis JS17.
    Shin YC; Yun H; Park HH
    Sci Rep; 2018 Jul; 8(1):11454. PubMed ID: 30061559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the stability of Vibrio fluvialis JS17 amine transaminase.
    Chen S; Campillo-Brocal JC; Berglund P; Humble MS
    J Biotechnol; 2018 Sep; 282():10-17. PubMed ID: 29906477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization and preliminary X-ray crystallographic studies of ω-transaminase from Vibrio fluvialis JS17.
    Jang TH; Kim B; Park OK; Bae JY; Kim BG; Yun H; Park HH
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Aug; 66(Pt 8):923-5. PubMed ID: 20693669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the active site of amine:pyruvate aminotransferase on the basis of the substrate structure-reactivity relationship: how the enzyme controls substrate specificity and stereoselectivity.
    Shin JS; Kim BG
    J Org Chem; 2002 May; 67(9):2848-53. PubMed ID: 11975536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic resolution of chiral amines with omega-transaminase using an enzyme-membrane reactor.
    Shin JS; Kim BG; Liese A; Wandrey C
    Biotechnol Bioeng; 2001 May; 73(3):179-87. PubMed ID: 11257600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric synthesis of chiral amines with omega-transaminase.
    Shin JS; Kim BG
    Biotechnol Bioeng; 1999 Oct; 65(2):206-11. PubMed ID: 10458742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of the Donor/Acceptor Spectrum of the (S)-Amine Transaminase from Vibrio fluvialis.
    Genz M; Vickers C; van den Bergh T; Joosten HJ; Dörr M; Höhne M; Bornscheuer UT
    Int J Mol Sci; 2015 Nov; 16(11):26953-63. PubMed ID: 26569229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redesigning the substrate specificity of omega-aminotransferase for the kinetic resolution of aliphatic chiral amines.
    Cho BK; Park HY; Seo JH; Kim J; Kang TJ; Lee BS; Kim BG
    Biotechnol Bioeng; 2008 Feb; 99(2):275-84. PubMed ID: 17680656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic resolution of (R,S)-sec-butylamine using omega-transaminase from Vibrio fluvialis JS17 under reduced pressure.
    Yun H; Cho BK; Kim BG
    Biotechnol Bioeng; 2004 Sep; 87(6):772-8. PubMed ID: 15329935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-Histidinol phosphate aminotransferase from Salmonella typhimurium. Kinetic behavior and sequence at the pyridoxal-P binding site.
    Hsu LC; Okamoto M; Snell EE
    Biochimie; 1989 Apr; 71(4):477-89. PubMed ID: 2503052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generic HPLC platform for automated enzyme reaction monitoring: Advancing the assay toolbox for transaminases and other PLP-dependent enzymes.
    Börner T; Grey C; Adlercreutz P
    Biotechnol J; 2016 Aug; 11(8):1025-36. PubMed ID: 27168488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterisation of D-amino acid aminotransferase from Rhizobium japonicum.
    Gosling JP; Fottrell PF
    Biochim Biophys Acta; 1978 Jan; 522(1):84-9. PubMed ID: 620041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two subtle amino Acid changes in a transaminase substantially enhance or invert enantiopreference in cascade syntheses.
    Skalden L; Peters C; Dickerhoff J; Nobili A; Joosten HJ; Weisz K; Höhne M; Bornscheuer UT
    Chembiochem; 2015 May; 16(7):1041-5. PubMed ID: 25801772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of novel thermostable taurine-pyruvate transaminase from Geobacillus thermodenitrificans for chiral amine synthesis.
    Chen Y; Yi D; Jiang S; Wei D
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3101-11. PubMed ID: 26577674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free energy analysis of ω-transaminase reactions to dissect how the enzyme controls the substrate selectivity.
    Park ES; Shin JS
    Enzyme Microb Technol; 2011 Sep; 49(4):380-7. PubMed ID: 22112564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.