BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 11835203)

  • 21. Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying.
    Patel SM; Bhugra C; Pikal MJ
    AAPS PharmSciTech; 2009; 10(4):1406-11. PubMed ID: 19937284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of Phosphate Buffered Saline (PBS) in Frozen State and after Freeze-Drying.
    Thorat AA; Suryanarayanan R
    Pharm Res; 2019 May; 36(7):98. PubMed ID: 31087169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monitoring of the freezing stage in a freeze-drying process using IR thermography.
    Colucci D; Maniaci R; Fissore D
    Int J Pharm; 2019 Jul; 566():488-499. PubMed ID: 31175990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formulation Screening and Freeze-Drying Process Optimization of Ginkgolide B Lyophilized Powder for Injection.
    Liu D; Galvanin F; Yu Y
    AAPS PharmSciTech; 2018 Feb; 19(2):541-550. PubMed ID: 28849380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of controlled ice nucleation on the freeze-drying of pharmaceutical products: the secondary drying step.
    Oddone I; Barresi AA; Pisano R
    Int J Pharm; 2017 May; 524(1-2):134-140. PubMed ID: 28363858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamical in-situ observation of the lyophilization and vacuum-drying processes of a model biopharmaceutical system by an environmental scanning electron microscope.
    Vetráková Ľ; Neděla V; Runštuk J; Tihlaříková E; Heger D; Shalaev E
    Int J Pharm; 2020 Jul; 585():119448. PubMed ID: 32461002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Component crystallization and physical collapse during freeze-drying of L-arginine-citric acid mixtures.
    Yamaki T; Ohdate R; Nakadai E; Yoshihashi Y; Yonemochi E; Terada K; Moriyama H; Izutsu K; Yomota C; Okuda H; Kawanishi T
    Chem Pharm Bull (Tokyo); 2012; 60(9):1176-81. PubMed ID: 22976327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer.
    Passot S; Tréléa IC; Marin M; Galan M; Morris GJ; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074511. PubMed ID: 19640147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Freeze-Drying From Organic Co-Solvent Systems, Part 2: Process Modifications to Reduce Residual Solvent Levels and Improve Product Quality Attributes.
    Kunz C; Schuldt-Lieb S; Gieseler H
    J Pharm Sci; 2019 Jan; 108(1):399-415. PubMed ID: 30017885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Freezing on Lyophilization Process Performance and Drug Product Cake Appearance.
    Esfandiary R; Gattu SK; Stewart JM; Patel SM
    J Pharm Sci; 2016 Apr; 105(4):1427-33. PubMed ID: 27019959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frozen storage of proteins: Use of mannitol to generate a homogenous freeze-concentrate.
    Sonje J; Chisholm CF; Suryanarayanan R
    Int J Pharm; 2023 Jan; 630():121995. PubMed ID: 35809832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of crystallizing and non-crystallizing cosolutes on succinate buffer crystallization and the consequent pH shift in frozen solutions.
    Sundaramurthi P; Suryanarayanan R
    Pharm Res; 2011 Feb; 28(2):374-85. PubMed ID: 20927571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of freezing procedure and annealing on the physico-chemical properties and the formation of mannitol hydrate in mannitol-sucrose-NaCl formulations.
    Hawe A; Friess W
    Eur J Pharm Biopharm; 2006 Nov; 64(3):316-25. PubMed ID: 16875806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of ethanol on physical state of freeze-dried mannitol.
    Takada A; Nail SL; Yonese M
    Pharm Res; 2009 May; 26(5):1112-20. PubMed ID: 19184373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formulations of sugars with amino acids or mannitol--influence of concentration ratio on the properties of the freeze-concentrate and the lyophilizate.
    Lueckel B; Bodmer D; Helk B; Leuenberger H
    Pharm Dev Technol; 1998 Aug; 3(3):325-36. PubMed ID: 9742553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of Two Different Pressure-Based Controlled Ice Nucleation Techniques in Freeze-Drying: The Integral Role of Shelf Temperature After Nucleation in Process Performance and Product Quality.
    Wenzel T; Gieseler M; Gieseler H
    J Pharm Sci; 2020 Sep; 109(9):2746-2756. PubMed ID: 32497596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of phase transitions during freeze-drying by in situ X-ray powder diffractometry.
    Cavatur RK; Suryanarayanan R
    Pharm Dev Technol; 1998 Nov; 3(4):579-86. PubMed ID: 9834962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solute crystallization in mannitol-glycine systems--implications on protein stabilization in freeze-dried formulations.
    Pyne A; Chatterjee K; Suryanarayanan R
    J Pharm Sci; 2003 Nov; 92(11):2272-83. PubMed ID: 14603512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase transitions in frozen systems and during freeze-drying: quantification using synchrotron X-ray diffractometry.
    Varshney DB; Sundaramurthi P; Kumar S; Shalaev EY; Kang SW; Gatlin LA; Suryanarayanan R
    Pharm Res; 2009 Jul; 26(7):1596-606. PubMed ID: 19326191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of subambient differential scanning calorimetry to monitor the frozen-state behavior of blends of excipients for freeze-drying.
    Martini A; Kume S; Crivellente M; Artico R
    PDA J Pharm Sci Technol; 1997; 51(2):62-7. PubMed ID: 9146035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.