BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11835486)

  • 1. Sequence-structure homology recognition by iterative alignment refinement and comparative modeling.
    Williams MG; Shirai H; Shi J; Nagendra HG; Mueller J; Mizuguchi K; Miguel RN; Lovell SC; Innis CA; Deane CM; Chen L; Campillo N; Burke DF; Blundell TL; de Bakker PI
    Proteins; 2001; Suppl 5():92-7. PubMed ID: 11835486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties.
    Shi J; Blundell TL; Mizuguchi K
    J Mol Biol; 2001 Jun; 310(1):243-57. PubMed ID: 11419950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. JOY: protein sequence-structure representation and analysis.
    Mizuguchi K; Deane CM; Blundell TL; Johnson MS; Overington JP
    Bioinformatics; 1998; 14(7):617-23. PubMed ID: 9730927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HOMSTRAD: recent developments of the Homologous Protein Structure Alignment Database.
    Stebbings LA; Mizuguchi K
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D203-7. PubMed ID: 14681395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An iterative structure-assisted approach to sequence alignment and comparative modeling.
    Burke DF; Deane CM; Nagarajaram HA; Campillo N; Martin-Martinez M; Mendes J; Molina F; Perry J; Reddy BV; Soares CM; Steward RE; Williams M; Carrondo MA; Blundell TL; Mizuguchi K
    Proteins; 1999; Suppl 3():55-60. PubMed ID: 10526352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HOMSTRAD: adding sequence information to structure-based alignments of homologous protein families.
    de Bakker PI; Bateman A; Burke DF; Miguel RN; Mizuguchi K; Shi J; Shirai H; Blundell TL
    Bioinformatics; 2001 Aug; 17(8):748-9. PubMed ID: 11524380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fold recognition from sequence comparisons.
    Koretke KK; Russell RB; Lupas AN
    Proteins; 2001; Suppl 5():68-75. PubMed ID: 11835483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HOMSTRAD: a database of protein structure alignments for homologous families.
    Mizuguchi K; Deane CM; Blundell TL; Overington JP
    Protein Sci; 1998 Nov; 7(11):2469-71. PubMed ID: 9828015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative modeling of CASP4 target proteins: combining results of sequence search with three-dimensional structure assessment.
    Venclovas C
    Proteins; 2001; Suppl 5():47-54. PubMed ID: 11835481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence patterns derived from the automated prediction of functional residues in structurally-aligned homologous protein families.
    Miguel RN
    Bioinformatics; 2004 Oct; 20(15):2380-9. PubMed ID: 15073006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of protein structure alignments to iterated hidden Markov model protocols for structure prediction.
    Scheeff ED; Bourne PE
    BMC Bioinformatics; 2006 Sep; 7():410. PubMed ID: 16970830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environment specific substitution tables improve membrane protein alignment.
    Hill JR; Kelm S; Shi J; Deane CM
    Bioinformatics; 2011 Jul; 27(13):i15-23. PubMed ID: 21685065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ulla: a program for calculating environment-specific amino acid substitution tables.
    Lee S; Blundell TL
    Bioinformatics; 2009 Aug; 25(15):1976-7. PubMed ID: 19417059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CASP2 knowledge-based approach to distant homology recognition and fold prediction in CASP4.
    Murzin AG; Bateman A
    Proteins; 2001; Suppl 5():76-85. PubMed ID: 11835484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K; Rychlewski L
    Proteins; 2003; 53 Suppl 6():410-7. PubMed ID: 14579329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling.
    Petrey D; Xiang Z; Tang CL; Xie L; Gimpelev M; Mitros T; Soto CS; Goldsmith-Fischman S; Kernytsky A; Schlessinger A; Koh IY; Alexov E; Honig B
    Proteins; 2003; 53 Suppl 6():430-5. PubMed ID: 14579332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM.
    Bates PA; Kelley LA; MacCallum RM; Sternberg MJ
    Proteins; 2001; Suppl 5():39-46. PubMed ID: 11835480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prelude and Fugue, predicting local protein structure, early folding regions and structural weaknesses.
    Kwasigroch JM; Rooman M
    Bioinformatics; 2006 Jul; 22(14):1800-2. PubMed ID: 16682423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A "FRankenstein's monster" approach to comparative modeling: merging the finest fragments of Fold-Recognition models and iterative model refinement aided by 3D structure evaluation.
    Kosinski J; Cymerman IA; Feder M; Kurowski MA; Sasin JM; Bujnicki JM
    Proteins; 2003; 53 Suppl 6():369-79. PubMed ID: 14579325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.