These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 11835488)

  • 21. Rosetta predictions in CASP5: successes, failures, and prospects for complete automation.
    Bradley P; Chivian D; Meiler J; Misura KM; Rohl CA; Schief WR; Wedemeyer WJ; Schueler-Furman O; Murphy P; Schonbrun J; Strauss CE; Baker D
    Proteins; 2003; 53 Suppl 6():457-68. PubMed ID: 14579334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CASP2 knowledge-based approach to distant homology recognition and fold prediction in CASP4.
    Murzin AG; Bateman A
    Proteins; 2001; Suppl 5():76-85. PubMed ID: 11835484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ab initio protein structure prediction of CASP III targets using ROSETTA.
    Simons KT; Bonneau R; Ruczinski I; Baker D
    Proteins; 1999; Suppl 3():171-6. PubMed ID: 10526365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting novel protein folds by using FRAGFOLD.
    Jones DT
    Proteins; 2001; Suppl 5():127-32. PubMed ID: 11835489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Residue contacts predicted by evolutionary covariance extend the application of ab initio molecular replacement to larger and more challenging protein folds.
    Simkovic F; Thomas JM; Keegan RM; Winn MD; Mayans O; Rigden DJ
    IUCrJ; 2016 Jul; 3(Pt 4):259-70. PubMed ID: 27437113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CAFASP2: the second critical assessment of fully automated structure prediction methods.
    Fischer D; Elofsson A; Rychlewski L; Pazos F; Valencia A; Rost B; Ortiz AR; Dunbrack RL
    Proteins; 2001; Suppl 5():171-83. PubMed ID: 11835495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta.
    Ovchinnikov S; Kim DE; Wang RY; Liu Y; DiMaio F; Baker D
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):67-75. PubMed ID: 26677056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of the CASP4 fold recognition category.
    Sippl MJ; Lackner P; Domingues FS; Prlić A; Malik R; Andreeva A; Wiederstein M
    Proteins; 2001; Suppl 5():55-67. PubMed ID: 11835482
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein structure prediction in 2002.
    Schonbrun J; Wedemeyer WJ; Baker D
    Curr Opin Struct Biol; 2002 Jun; 12(3):348-54. PubMed ID: 12127454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction.
    Braun T; Koehler Leman J; Lange OF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004661. PubMed ID: 26713437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein structure prediction and analysis using the Robetta server.
    Kim DE; Chivian D; Baker D
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W526-31. PubMed ID: 15215442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ab Initio structure prediction for Escherichia coli: towards genome-wide protein structure modeling and fold assignment.
    Xu D; Zhang Y
    Sci Rep; 2013; 3():1895. PubMed ID: 23719418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CASP2: report on ab initio predictions.
    Lesk AM
    Proteins; 1997; Suppl 1():151-66. PubMed ID: 9485507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predictions without templates: new folds, secondary structure, and contacts in CASP5.
    Aloy P; Stark A; Hadley C; Russell RB
    Proteins; 2003; 53 Suppl 6():436-56. PubMed ID: 14579333
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of performance in successive CASP experiments.
    Venclovas C; Zemla A; Fidelis K; Moult J
    Proteins; 2001; Suppl 5():163-70. PubMed ID: 11835494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PconsFold: improved contact predictions improve protein models.
    Michel M; Hayat S; Skwark MJ; Sander C; Marks DS; Elofsson A
    Bioinformatics; 2014 Sep; 30(17):i482-8. PubMed ID: 25161237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduced Fragment Diversity for Alpha and Alpha-Beta Protein Structure Prediction using Rosetta.
    Abbass J; Nebel JC
    Protein Pept Lett; 2017; 24(3):215-222. PubMed ID: 27993124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein structure prediction by threading methods: evaluation of current techniques.
    Lemer CM; Rooman MJ; Wodak SJ
    Proteins; 1995 Nov; 23(3):337-55. PubMed ID: 8710827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A "FRankenstein's monster" approach to comparative modeling: merging the finest fragments of Fold-Recognition models and iterative model refinement aided by 3D structure evaluation.
    Kosinski J; Cymerman IA; Feder M; Kurowski MA; Sasin JM; Bujnicki JM
    Proteins; 2003; 53 Suppl 6():369-79. PubMed ID: 14579325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.