These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 11835488)

  • 41. Prediction of local structure in proteins using a library of sequence-structure motifs.
    Bystroff C; Baker D
    J Mol Biol; 1998 Aug; 281(3):565-77. PubMed ID: 9698570
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ab initio modeling led annotation suggests nucleic acid binding function for many DUFs.
    Rigden DJ
    OMICS; 2011; 15(7-8):431-8. PubMed ID: 21348639
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models.
    Keegan RM; Bibby J; Thomas J; Xu D; Zhang Y; Mayans O; Winn MD; Rigden DJ
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):338-43. PubMed ID: 25664744
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Processing and evaluation of predictions in CASP4.
    Zemla A; Venclovas ; Moult J; Fidelis K
    Proteins; 2001; Suppl 5():13-21. PubMed ID: 11835478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ab initio fold prediction of small helical proteins using distance geometry and knowledge-based scoring functions.
    Huang ES; Samudrala R; Ponder JW
    J Mol Biol; 1999 Jul; 290(1):267-81. PubMed ID: 10388572
    [TBL] [Abstract][Full Text] [Related]  

  • 46. De novo prediction of three-dimensional structures for major protein families.
    Bonneau R; Strauss CE; Rohl CA; Chivian D; Bradley P; Malmström L; Robertson T; Baker D
    J Mol Biol; 2002 Sep; 322(1):65-78. PubMed ID: 12215415
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein structure prediction begins well but ends badly.
    Saunders R; Deane CM
    Proteins; 2010 Apr; 78(5):1282-90. PubMed ID: 20014025
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home.
    Das R; Qian B; Raman S; Vernon R; Thompson J; Bradley P; Khare S; Tyka MD; Bhat D; Chivian D; Kim DE; Sheffler WH; Malmström L; Wollacott AM; Wang C; Andre I; Baker D
    Proteins; 2007; 69 Suppl 8():118-28. PubMed ID: 17894356
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of current techniques for ab initio protein structure prediction.
    Defay T; Cohen FE
    Proteins; 1995 Nov; 23(3):431-45. PubMed ID: 8710836
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving the performance of Rosetta using multiple sequence alignment information and global measures of hydrophobic core formation.
    Bonneau R; Strauss CE; Baker D
    Proteins; 2001 Apr; 43(1):1-11. PubMed ID: 11170209
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein structure prediction using a combination of sequence-based alignment, constrained energy minimization, and structural alignment.
    Standley DM; Eyrich VA; An Y; Pincus DL; Gunn JR; Friesner RA
    Proteins; 2001; Suppl 5():133-9. PubMed ID: 11835490
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SimFold energy function for de novo protein structure prediction: consensus with Rosetta.
    Fujitsuka Y; Chikenji G; Takada S
    Proteins; 2006 Feb; 62(2):381-98. PubMed ID: 16294329
    [TBL] [Abstract][Full Text] [Related]  

  • 53. What is the value added by human intervention in protein structure prediction?
    Karplus K; Karchin R; Barrett C; Tu S; Cline M; Diekhans M; Grate L; Casper J; Hughey R
    Proteins; 2001; Suppl 5():86-91. PubMed ID: 11835485
    [TBL] [Abstract][Full Text] [Related]  

  • 54. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain-domain interaction prediction.
    Xu D; Jaroszewski L; Li Z; Godzik A
    Bioinformatics; 2015 Jul; 31(13):2098-105. PubMed ID: 25701568
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model.
    Liu Y; Beveridge DL
    Proteins; 2002 Jan; 46(1):128-46. PubMed ID: 11746709
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein structure prediction: recognition of primary, secondary, and tertiary structural features from amino acid sequence.
    Eisenhaber F; Persson B; Argos P
    Crit Rev Biochem Mol Biol; 1995; 30(1):1-94. PubMed ID: 7587278
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein threading by PROSPECT: a prediction experiment in CASP3.
    Xu Y; Xu D; Crawford OH; Einstein ; Larimer F; Uberbacher E; Unseren MA; Zhang G
    Protein Eng; 1999 Nov; 12(11):899-907. PubMed ID: 10585495
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RBO Aleph: leveraging novel information sources for protein structure prediction.
    Mabrouk M; Putz I; Werner T; Schneider M; Neeb M; Bartels P; Brock O
    Nucleic Acids Res; 2015 Jul; 43(W1):W343-8. PubMed ID: 25897112
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K; Rychlewski L
    Proteins; 2003; 53 Suppl 6():410-7. PubMed ID: 14579329
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Customised fragments libraries for protein structure prediction based on structural class annotations.
    Abbass J; Nebel JC
    BMC Bioinformatics; 2015 Apr; 16(1):136. PubMed ID: 25925397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.