BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 11837324)

  • 1. Two bioluminescent diptera: the North American Orfelia fultoni and the Australian Arachnocampa flava. Similar niche, different bioluminescence systems.
    Viviani VR; Hastings JW; Wilson T
    Photochem Photobiol; 2002 Jan; 75(1):22-7. PubMed ID: 11837324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new brilliantly blue-emitting luciferin-luciferase system from Orfelia fultoni and Keroplatinae (Diptera).
    Viviani VR; Silva JR; Amaral DT; Bevilaqua VR; Abdalla FC; Branchini BR; Johnson CH
    Sci Rep; 2020 Jun; 10(1):9608. PubMed ID: 32541805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orfelia-type luciferin and its associated storage protein in the non-luminescent cave worm Neoditomyia sp. (Diptera: Keroplatidae) from the Atlantic rainforest: biological and evolutionary implications.
    Viviani VR; Amaral DT; Bevilaqua VR; Falaschi RL
    Photochem Photobiol Sci; 2018 Oct; 17(10):1282-1288. PubMed ID: 30074596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-Seq analysis of the blue light-emitting Orfelia fultoni (Diptera: Keroplatidae) suggest photoecological adaptations at the molecular level.
    Amaral DT; Johnson CH; Viviani VR
    Comp Biochem Physiol Part D Genomics Proteomics; 2021 Sep; 39():100840. PubMed ID: 34022525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neoceroplatus betaryiensis nov. sp. (Diptera: Keroplatidae) is the first record of a bioluminescent fungus-gnat in South America.
    Falaschi RL; Amaral DT; Santos I; Domingos AHR; Johnson GA; Martins AGS; Viroomal IB; Pompéia SL; Mirza JD; Oliveira AG; Bechara EJH; Viviani VR; Stevani CV
    Sci Rep; 2019 Aug; 9(1):11291. PubMed ID: 31383897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis for the blue bioluminescence of the Australian glow-worm Arachnocampa richardsae (Diptera: Keroplatidae).
    Trowell SC; Dacres H; Dumancic MM; Leitch V; Rickards RW
    Biochem Biophys Res Commun; 2016 Sep; 478(2):533-9. PubMed ID: 27457804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transcriptional and proteomic survey of Arachnocampa luminosa (Diptera: Keroplatidae) lanterns gives insights into the origin of bioluminescence from the Malpighian tubules in Diptera.
    Silva JR; Amaral DT; Hastings JW; Wilson T; Viviani VR
    Luminescence; 2015 Nov; 30(7):996-1003. PubMed ID: 25676901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Zealand glowworm (Arachnocampa luminosa) bioluminescence is produced by a firefly-like luciferase but an entirely new luciferin.
    Watkins OC; Sharpe ML; Perry NB; Krause KL
    Sci Rep; 2018 Feb; 8(1):3278. PubMed ID: 29459729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using light as a lure is an efficient predatory strategy in Arachnocampa flava, an Australian glowworm.
    Willis RE; White CR; Merritt DJ
    J Comp Physiol B; 2011 May; 181(4):477-86. PubMed ID: 21136265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. alpha-Synuclein enhances bioluminescent activity of firefly luciferase by facilitating luciferin localization.
    Kim J; Moon CH; Jung S; Paik SR
    Biochim Biophys Acta; 2009 Feb; 1794(2):309-14. PubMed ID: 19028608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon dioxide-induced bioluminescence increase in
    Charlton HR; Merritt DJ
    J Exp Biol; 2020 Aug; 223(Pt 15):. PubMed ID: 32611789
    [No Abstract]   [Full Text] [Related]  

  • 12. Etmopterus lantern sharks use coelenterazine as the substrate for their luciferin-luciferase bioluminescence system.
    Mizuno G; Yano D; Paitio J; Endo H; Oba Y
    Biochem Biophys Res Commun; 2021 Nov; 577():139-145. PubMed ID: 34517211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronized circadian bioluminescence in cave-dwelling Arachnocampa tasmaniensis (Glowworms).
    Merritt DJ; Clarke AK
    J Biol Rhythms; 2011 Feb; 26(1):34-43. PubMed ID: 21252364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Same temporal niche, opposite rhythmicity: two closely related bioluminescent insects with opposite bioluminesce propensity rhythms.
    Merritt DJ; Rodgers EM; Amir AF; Clarke AK
    Chronobiol Int; 2012 Dec; 29(10):1336-44. PubMed ID: 23130886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glowworms: a review of Arachnocampa spp. and kin.
    Meyer-Rochow VB
    Luminescence; 2007; 22(3):251-65. PubMed ID: 17285566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homeostatic and circadian mechanisms of bioluminescence regulation differ between a forest and a facultative cave species of glowworm, Arachnocampa.
    Berry SE; Gilchrist J; Merritt DJ
    J Insect Physiol; 2017 Nov; 103():1-9. PubMed ID: 28899751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress in the Study of Bioluminescent Earthworms.
    Rodionova NS; Rota E; Tsarkova AS; Petushkov VN
    Photochem Photobiol; 2017 Mar; 93(2):416-428. PubMed ID: 28063169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioluminescence of beetle luciferases with 6'-amino-D-luciferin analogues reveals excited keto-oxyluciferin as the emitter and phenolate/luciferin binding site interactions modulate bioluminescence colors.
    Viviani VR; Neves DR; Amaral DT; Prado RA; Matsuhashi T; Hirano T
    Biochemistry; 2014 Aug; 53(32):5208-20. PubMed ID: 25025160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of different salts and detergents on luciferin-luciferase luminescence of the enchytraeid Fridericia heliota.
    Rodionova NS; Petushkov VN
    J Photochem Photobiol B; 2006 May; 83(2):123-8. PubMed ID: 16464604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of biogenic amines in regulating bioluminescence in the Australian glowworm Arachnocampa flava.
    Rigby LM; Merritt DJ
    J Exp Biol; 2011 Oct; 214(Pt 19):3286-93. PubMed ID: 21900476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.