These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11837417)

  • 41. Comparative physiology of phenanthrene degradation by two dissimilar pseudomonads isolated from a creosote-contaminated soil.
    Stringfellow WT; Aitken MD
    Can J Microbiol; 1994 Jun; 40(6):432-8. PubMed ID: 8050063
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of soil aggregation on the biodegradation of phenanthrene aged in soil.
    Nam K; Kim JY; Oh DI
    Environ Pollut; 2003; 121(1):147-51. PubMed ID: 12475072
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Indigenous
    Okere UV; Schuster JK; Ogbonnaya UO; Jones KC; Semple KT
    Environ Sci Process Impacts; 2017 Nov; 19(11):1437-1444. PubMed ID: 29083422
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of bacterial community composition and soil factors on the fate of phenanthrene and benzo[a]pyrene in three contrasting farmland soils.
    Zhu Q; Wu Y; Zeng J; Wang X; Zhang T; Lin X
    Environ Pollut; 2019 Apr; 247():229-237. PubMed ID: 30677667
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of the interaction between biodegradation and sorption of phenanthrene in soil-slurry systems.
    Woo SH; Park JM; Rittmann BE
    Biotechnol Bioeng; 2001 Apr; 73(1):12-24. PubMed ID: 11255148
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil.
    Chouychai W; Thongkukiatkul A; Upatham S; Lee H; Pokethitiyook P; Kruatrachue M
    J Environ Biol; 2009 Jan; 30(1):139-44. PubMed ID: 20112876
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of salicylate and biosurfactant in inducing phenanthrene degradation in batch soil slurries.
    Gottfried A; Singhal N; Elliot R; Swift S
    Appl Microbiol Biotechnol; 2010 May; 86(5):1563-71. PubMed ID: 20146061
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioavailability and degradation of phenanthrene in compost amended soils.
    Puglisi E; Cappa F; Fragoulis G; Trevisan M; Del Re AA
    Chemosphere; 2007 Mar; 67(3):548-56. PubMed ID: 17125813
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Utilization of sorbed compounds by microorganisms specifically isolated for that purpose.
    Tang WC; White JC; Alexander M
    Appl Microbiol Biotechnol; 1998 Jan; 49(1):117-21. PubMed ID: 9487714
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost.
    Marchal G; Smith KE; Rein A; Winding A; Trapp S; Karlson UG
    Chemosphere; 2013 Feb; 90(6):1767-78. PubMed ID: 22921652
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fate and behaviour of phenanthrene in the natural and artificial soils.
    Hofman J; Rhodes A; Semple KT
    Environ Pollut; 2008 Mar; 152(2):468-75. PubMed ID: 17850942
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biodegradation of phenanthrene by indigenous microorganisms in soils from Livingstone Island, Antarctica.
    Okere UV; Cabrerizo A; Dachs J; Jones KC; Semple KT
    FEMS Microbiol Lett; 2012 Apr; 329(1):69-77. PubMed ID: 22268804
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biodegradation of phenanthrene in soil-slurry systems with different mass transfer regimes and soil contents.
    Woo SH; Lee MW; Park JM
    J Biotechnol; 2004 Jun; 110(3):235-50. PubMed ID: 15163514
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation.
    Xu SY; Chen YX; Wu WX; Wang KX; Lin Q; Liang XQ
    Sci Total Environ; 2006 Jun; 363(1-3):206-15. PubMed ID: 15985280
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phenanthrene metabolites bound to soil organic matter by birnessite following partial biodegradation.
    Lee S; Ryu H; Nam K
    Environ Toxicol Chem; 2009 May; 28(5):946-52. PubMed ID: 19125546
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of corn plant on survival and phenanthrene degradation capacity of Pseudomonas sp. UG14LR in two soils.
    Chouychai W; Thongkukiatkul A; Upatham S; Pokethitiyook P; Kruatrachue M; Lee H
    Int J Phytoremediation; 2012 Jul; 14(6):585-95. PubMed ID: 22908628
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of a NAPL on the loss and biodegradation of 14C-phenanthrene residues in two dissimilar soils.
    Swindell AL; Reid BJ
    Chemosphere; 2007 Jan; 66(2):332-9. PubMed ID: 16766015
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of sterile storage, cation saturation and substrate additions on the degradability and extractability of nonylphenol and phenanthrene in soil.
    Shchegolikhina A; Marschner B
    Chemosphere; 2013 Nov; 93(9):2195-202. PubMed ID: 24011898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of hydroxypropyl-beta-cyclodextrin on the extraction and biodegradation of phenanthrene in soil.
    Reid BJ; Stokes JD; Jones KC; Semple KT
    Environ Toxicol Chem; 2004 Mar; 23(3):550-6. PubMed ID: 15285345
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of activated charcoal on desorption kinetics and biodegradation of phenanthrene in soil.
    Rhodes AH; Riding MJ; McAllister LE; Lee K; Semple KT
    Environ Sci Technol; 2012 Nov; 46(22):12445-51. PubMed ID: 23092507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.