These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11837443)

  • 41. Impacts of runoff from sulfuric soils on sediment chemistry in an estuarine lake.
    Macdonald BC; Smith J; Keene AF; Tunks M; Kinsela A; White I
    Sci Total Environ; 2004 Aug; 329(1-3):115-30. PubMed ID: 15262162
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River.
    Ouyang W; Hao F; Skidmore AK; Toxopeus AG
    Sci Total Environ; 2010 Dec; 409(2):396-403. PubMed ID: 21071065
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modelling of the estimated contributions of different sub-watersheds and sources to phosphorous export and loading from the Dongting Lake watershed, China.
    Hou Y; Chen W; Liao Y; Luo Y
    Environ Monit Assess; 2017 Nov; 189(12):602. PubMed ID: 29101549
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of pollutant runoff in Lake Biwa tributaries, Japan and the Brunette River watershed, Canada.
    Ichiki A; Hall KJ; Maruta Y; Yamada K
    Water Sci Technol; 2001; 44(7):69-76. PubMed ID: 11724497
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Using a GIS transfer model to evaluate pollutant loads in the Lake Kinneret watershed, Israel.
    Markel D; Somma F; Evans BM
    Water Sci Technol; 2006; 53(10):75-82. PubMed ID: 16838691
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Annual sediment yield in sub-watersheds at upper reaches of Minjiang River: a simulation with SEDD model].
    Yang M; Li XZ; Hu YM; He XY
    Ying Yong Sheng Tai Xue Bao; 2007 Aug; 18(8):1758-64. PubMed ID: 17974241
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data.
    Arenas Amado A; Schilling KE; Jones CS; Thomas N; Weber LJ
    Environ Monit Assess; 2017 Sep; 189(9):426. PubMed ID: 28766121
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sulfur and strontium isotope geochemistry of tributary rivers of Lake Biwa: implications for human impact on the decadal change of lake water quality.
    Nakano T; Tayasu I; Wada E; Igeta A; Hyodo F; Miura Y
    Sci Total Environ; 2005 Jun; 345(1-3):1-12. PubMed ID: 15919522
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimates of diffuse phosphorus sources in surface waters of the United States using a spatially referenced watershed model.
    Alexander RB; Smith RA; Schwarz GE
    Water Sci Technol; 2004; 49(3):1-10. PubMed ID: 15053093
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Storm Event Suspended Sediment-Discharge Hysteresis and Controls in Agricultural Watersheds: Implications for Watershed Scale Sediment Management.
    Sherriff SC; Rowan JS; Fenton O; Jordan P; Melland AR; Mellander PE; hUallacháin DÓ
    Environ Sci Technol; 2016 Feb; 50(4):1769-78. PubMed ID: 26784287
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mass balance approach for assessment of pollution load in the Krishna River.
    Sekhar C; Umamahesh NV
    J Environ Sci Eng; 2004 Apr; 46(2):159-71. PubMed ID: 16649607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Riverbed permeabilities: information from pooled data.
    Calver A
    Ground Water; 2001; 39(4):546-53. PubMed ID: 11447855
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed.
    Nerantzaki SD; Giannakis GV; Efstathiou D; Nikolaidis NP; Sibetheros IΑ; Karatzas GP; Zacharias I
    Sci Total Environ; 2015 Dec; 538():288-97. PubMed ID: 26311584
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale.
    Sommerlot AR; Nejadhashemi AP; Woznicki SA; Giri S; Prohaska MD
    J Environ Manage; 2013 Sep; 127():228-36. PubMed ID: 23764473
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental study on soluble chemical transfer to surface runoff from soil.
    Tong J; Yang J; Hu BX; Sun H
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20378-20387. PubMed ID: 27452476
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling diffuse pollution with a distributed approach.
    León LF; Soulis ED; Kouwen N; Farquhar GJ
    Water Sci Technol; 2002; 45(9):149-56. PubMed ID: 12079097
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sediments deposition due to soil erosion in the watershed region of Mangla dam.
    Butt MJ; Mahmood R; Waqas A
    Environ Monit Assess; 2011 Oct; 181(1-4):419-29. PubMed ID: 21225339
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nitrate losses in subsurface drainage from a corn-soybean rotation as affected by fall and spring application of nitrogen and nitrapyrin.
    Randall GW; Vetsch JA
    J Environ Qual; 2005; 34(2):590-7. PubMed ID: 15758112
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Effects of sub-watershed landscape patterns at the upper reaches of Minjiang River on soil erosion].
    Yang M; Li XZ; Yang ZP; Hu YM; Wen QC
    Ying Yong Sheng Tai Xue Bao; 2007 Nov; 18(11):2512-9. PubMed ID: 18260457
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Influence of landscape characteristics on non-point source pollutant output in Taihu upper-river basin].
    Li Y; Li HP
    Huan Jing Ke Xue; 2008 May; 29(5):1319-24. PubMed ID: 18624200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.