BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 11837445)

  • 1. The Lake Erie Agricultural Systems for Environmental Quality project: an introduction.
    Richards RP; Calhoun FG; Matisoff G
    J Environ Qual; 2002; 31(1):6-16. PubMed ID: 11837445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trends in agriculture in the LEASEQ watersheds, 1975-1995. Lake Erie Agricultural Systems for Environmental Quality.
    Richards RP; Baker DB; Eckert DJ
    J Environ Qual; 2002; 31(1):17-24. PubMed ID: 11837420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices?
    Jarvie HP; Johnson LT; Sharpley AN; Smith DR; Baker DB; Bruulsema TW; Confesor R
    J Environ Qual; 2017 Jan; 46(1):123-132. PubMed ID: 28177409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating agricultural nonpoint-source pollution programs in two Lake Erie tributaries.
    Forster DL; Rausch JN
    J Environ Qual; 2002; 31(1):24-31. PubMed ID: 11837427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a sediment quality index to the lower Laurentian Great Lakes.
    Marvin C; Grapentine L; Painter S
    Environ Monit Assess; 2004 Feb; 91(1-3):1-16. PubMed ID: 14969435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soils, water quality, and watershed size: interactions in the Maumee and Sandusky river basins of northwestern Ohio.
    Calhoun FG; Baker DB; Slater BK
    J Environ Qual; 2002; 31(1):47-53. PubMed ID: 11837443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of conservation tillage on the performance of Lake Erie basin farms.
    Forster DL
    J Environ Qual; 2002; 31(1):32-7. PubMed ID: 11837437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of agricultural drainage, storm-events, and natural filtration on the biogeochemical cycling capacity of aquatic and sediment environments in Lake Erie's drainage basin.
    Knorr S; Weisener CG; Phillips LA
    Sci Total Environ; 2023 Dec; 905():167102. PubMed ID: 37717759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trends in water quality in LEASEQ rivers and streams (northwestern Ohio), 1975-1995. Lake Erie Agricultural Systems for Environmental Quality.
    Richards RP; Baker DB
    J Environ Qual; 2002; 31(1):90-6. PubMed ID: 11837449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engaging Stakeholders To Define Feasible and Desirable Agricultural Conservation in Western Lake Erie Watersheds.
    Kalcic MM; Kirchhoff C; Bosch N; Muenich RL; Murray M; Griffith Gardner J; Scavia D
    Environ Sci Technol; 2016 Aug; 50(15):8135-45. PubMed ID: 27336855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crop growth, hydrology, and water quality dynamics in agricultural fields across the Western Lake Erie Basin: Multi-site verification of the Nutrient Tracking Tool (NTT).
    Guo T; Confesor R; Saleh A; King K
    Sci Total Environ; 2020 Jul; 726():138485. PubMed ID: 32315850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and temporal patterns in mercury contamination in sediments of the Laurentian Great Lakes.
    Marvin C; Painter S; Rossmann R
    Environ Res; 2004 Jul; 95(3):351-62. PubMed ID: 15220069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radionuclides as indicators of sediment transport in agricultural watersheds that drain to Lake Erie.
    Matisoff G; Bonniwell EC; Whiting PJ
    J Environ Qual; 2002; 31(1):62-72. PubMed ID: 11837446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating causes of trends in long-term dissolved reactive phosphorus loads to Lake Erie.
    Daloğlu I; Cho KH; Scavia D
    Environ Sci Technol; 2012 Oct; 46(19):10660-6. PubMed ID: 22962949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence of selected pharmaceuticals in an agricultural landscape, western Lake Erie basin.
    Wu C; Witter JD; Spongberg AL; Czajkowski KP
    Water Res; 2009 Aug; 43(14):3407-16. PubMed ID: 19527913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal loading of phosphate in Lake Erie Central Basin.
    Paytan A; Roberts K; Watson S; Peek S; Chuang PC; Defforey D; Kendall C
    Sci Total Environ; 2017 Feb; 579():1356-1365. PubMed ID: 27923579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One size does not fit all: Toward regional conservation practice guidance to reduce phosphorus loss risk in the Lake Erie watershed.
    Macrae M; Jarvie H; Brouwer R; Gunn G; Reid K; Joosse P; King K; Kleinman P; Smith D; Williams M; Zwonitzer M
    J Environ Qual; 2021 May; 50(3):529-546. PubMed ID: 33742722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of agriculture on water quality of Lake Biwa tributaries, Japan.
    Nakano T; Tayasu I; Yamada Y; Hosono T; Igeta A; Hyodo F; Ando A; Saitoh Y; Tanaka T; Wada E; Yachi S
    Sci Total Environ; 2008 Jan; 389(1):132-48. PubMed ID: 17935759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climatic and agricultural factors in nutrient exports from two watersheds in Ohio.
    Moog DB; Whiting PJ
    J Environ Qual; 2002; 31(1):72-83. PubMed ID: 11837447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density data for Lake Erie benthic invertebrate assemblages from 1930 to 2019.
    Burlakova LE; Karatayev AY; Hrycik AR; Daniel SE; Mehler K; Hinchey EK; Dermott R; Griffiths R; Denecke LE
    Ecology; 2024 May; 105(5):e4301. PubMed ID: 38571283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.