These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 11837614)
1. A method to quantify the dynamics and complexity of re-entry in computational models of ventricular fibrillation. Clayton RH; Holden AV Phys Med Biol; 2002 Jan; 47(2):225-38. PubMed ID: 11837614 [TBL] [Abstract][Full Text] [Related]
2. Dynamics and interaction of filaments in a computational model of re-entrant ventricular fibrillation. Clayton RH; Holden AV Phys Med Biol; 2002 May; 47(10):1777-92. PubMed ID: 12069093 [TBL] [Abstract][Full Text] [Related]
3. Phase singularities and filaments: simplifying complexity in computational models of ventricular fibrillation. Clayton RH; Zhuchkova EA; Panfilov AV Prog Biophys Mol Biol; 2006; 90(1-3):378-98. PubMed ID: 16098568 [TBL] [Abstract][Full Text] [Related]
4. Effect of regional differences in cardiac cellular electrophysiology on the stability of ventricular arrhythmias: a computational study. Clayton RH; Holden AV Phys Med Biol; 2003 Jan; 48(1):95-111. PubMed ID: 12564503 [TBL] [Abstract][Full Text] [Related]
5. Vortex filament dynamics in computational models of ventricular fibrillation in the heart. Clayton RH Chaos; 2008 Dec; 18(4):043127. PubMed ID: 19123637 [TBL] [Abstract][Full Text] [Related]
6. Filament behavior in a computational model of ventricular fibrillation in the canine heart. Clayton RH; Holden AV IEEE Trans Biomed Eng; 2004 Jan; 51(1):28-34. PubMed ID: 14723491 [TBL] [Abstract][Full Text] [Related]
7. Computational framework for simulating the mechanisms and ECG of re-entrant ventricular fibrillation. Clayton RH; Holden AV Physiol Meas; 2002 Nov; 23(4):707-26. PubMed ID: 12450271 [TBL] [Abstract][Full Text] [Related]
8. Models of ventricular arrhythmia mechanisms. Clayton RH Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1526-9. PubMed ID: 24109990 [TBL] [Abstract][Full Text] [Related]
9. Control of electrical alternans in simulations of paced myocardium using extended time-delay autosynchronization. Berger CM; Cain JW; Socolar JE; Gauthier DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041917. PubMed ID: 17995036 [TBL] [Abstract][Full Text] [Related]
14. Organization of ventricular fibrillation in the human heart. Ten Tusscher KH; Hren R; Panfilov AV Circ Res; 2007 Jun; 100(12):e87-101. PubMed ID: 17540975 [TBL] [Abstract][Full Text] [Related]
15. Vulnerability to re-entry in simulated two-dimensional cardiac tissue: effects of electrical restitution and stimulation sequence. Tran DX; Yang MJ; Weiss JN; Garfinkel A; Qu Z Chaos; 2007 Dec; 17(4):043115. PubMed ID: 18163779 [TBL] [Abstract][Full Text] [Related]
16. Sudden cardiac death: the search for a non-invasive means to detect the electrical substrate for the development of life-threatening cardiac arrhythmias. Smith ER; Gardner MJ; Montague TJ; Horacek BM Clin Invest Med; 1985; 8(1):41-7. PubMed ID: 3886243 [TBL] [Abstract][Full Text] [Related]
17. Re-entrant ventricular arrhythmias in the late myocardial infarction period. 1. Conduction characteristics in the infarction zone. El-Sherif N; Scherlag BJ; Lazzara R; Hope RR Circulation; 1977 May; 55(5):686-702. PubMed ID: 849629 [TBL] [Abstract][Full Text] [Related]
18. A simulation study of the effects of cardiac anatomy in ventricular fibrillation. Xie F; Qu Z; Yang J; Baher A; Weiss JN; Garfinkel A J Clin Invest; 2004 Mar; 113(5):686-93. PubMed ID: 14991066 [TBL] [Abstract][Full Text] [Related]
19. Phase statistics approach to human ventricular fibrillation. Wu MC; Watanabe E; Struzik ZR; Hu CK; Yamamoto Y Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051917. PubMed ID: 20365016 [TBL] [Abstract][Full Text] [Related]
20. Re-entrant cardiac arrhythmias in computational models of long QT myocardium. Clayton RH; Bailey A; Biktashev VN; Holden AV J Theor Biol; 2001 Jan; 208(2):215-25. PubMed ID: 11162065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]