BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 11837697)

  • 1. Comparison of bidirectional cephalexin transport across MDCK and caco-2 cell monolayers: interactions with peptide transporters.
    Putnam WS; Pan L; Tsutsui K; Takahashi L; Benet LZ
    Pharm Res; 2002 Jan; 19(1):27-33. PubMed ID: 11837697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apical-to-basolateral transepithelial transport of Ochratoxin A by two subtypes of Madin-Darby canine kidney cells.
    Schwerdt G; Gekle M; Freudinger R; Mildenberger S; Silbernagl S
    Biochim Biophys Acta; 1997 Mar; 1324(2):191-9. PubMed ID: 9092706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of monocarboxylic acid, large neutral amino acid, bile acid and peptide transporters, and P-glycoprotein in MDCK and Caco-2 cells.
    Putnam WS; Ramanathan S; Pan L; Takahashi LH; Benet LZ
    J Pharm Sci; 2002 Dec; 91(12):2622-35. PubMed ID: 12434407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H(+)-coupled dipeptide (glycylsarcosine) transport across apical and basal borders of human intestinal Caco-2 cell monolayers display distinctive characteristics.
    Thwaites DT; Brown CD; Hirst BH; Simmons NL
    Biochim Biophys Acta; 1993 Sep; 1151(2):237-45. PubMed ID: 8373798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct transport characteristics of basolateral peptide transporters between MDCK and Caco-2 cells.
    Sawada K; Terada T; Saito H; Inui K
    Pflugers Arch; 2001 Oct; 443(1):31-7. PubMed ID: 11692263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val-Val in the human intestinal cell line, Caco-2.
    Tamura K; Lee CP; Smith PL; Borchardt RT
    Pharm Res; 1996 Nov; 13(11):1663-7. PubMed ID: 8956331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of a basolateral transporter in rosuvastatin transport and its interplay with apical breast cancer resistance protein in polarized cell monolayer systems.
    Li J; Wang Y; Zhang W; Huang Y; Hein K; Hidalgo IJ
    Drug Metab Dispos; 2012 Nov; 40(11):2102-8. PubMed ID: 22855735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of decursin and decursinol angelate across Caco-2 and MDR-MDCK cell monolayers: in vitro models for intestinal and blood-brain barrier permeability.
    Madgula VL; Avula B; Reddy V L N; Khan IA; Khan SI
    Planta Med; 2007 Apr; 73(4):330-5. PubMed ID: 17372866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of bidirectional lamivudine and zidovudine transport using MDCK, MDCK-MDR1, and Caco-2 cell monolayers.
    de Souza J; Benet LZ; Huang Y; Storpirtis S
    J Pharm Sci; 2009 Nov; 98(11):4413-9. PubMed ID: 19472342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delineation of human peptide transporter 1 (hPepT1)-mediated uptake and transport of substrates with varying transporter affinities utilizing stably transfected hPepT1/Madin-Darby canine kidney clones and Caco-2 cells.
    Bhardwaj RK; Herrera-Ruiz D; Sinko PJ; Gudmundsson OS; Knipp G
    J Pharmacol Exp Ther; 2005 Sep; 314(3):1093-100. PubMed ID: 15901802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening.
    Irvine JD; Takahashi L; Lockhart K; Cheong J; Tolan JW; Selick HE; Grove JR
    J Pharm Sci; 1999 Jan; 88(1):28-33. PubMed ID: 9874698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of P-glycoprotein mediated transport of K02, a novel vinylsulfone peptidomimetic cysteine protease inhibitor, across MDR1-MDCK and Caco-2 cell monolayers.
    Zhang Y; Benet LZ
    Pharm Res; 1998 Oct; 15(10):1520-4. PubMed ID: 9794492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apparent active transport of MDMA is not mediated by P-glycoprotein: a comparison with MDCK and Caco-2 monolayers.
    Bertelsen KM; Greenblatt DJ; von Moltke LL
    Biopharm Drug Dispos; 2006 Jul; 27(5):219-27. PubMed ID: 16552717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional assessment of multiple P-glycoprotein (P-gp) probe substrates: influence of cell line and modulator concentration on P-gp activity.
    Taub ME; Podila L; Ely D; Almeida I
    Drug Metab Dispos; 2005 Nov; 33(11):1679-87. PubMed ID: 16093365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of P-glycoprotein-mediated renal drug interactions in an MDR1-MDCK model.
    Karyekar CS; Eddington ND; Garimella TS; Gubbins PO; Dowling TC
    Pharmacotherapy; 2003 Apr; 23(4):436-42. PubMed ID: 12680473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes.
    Inui K; Yamamoto M; Saito H
    J Pharmacol Exp Ther; 1992 Apr; 261(1):195-201. PubMed ID: 1560365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoselective and concentration-dependent polarized epithelial permeability of a series of phosphoramidate triester prodrugs of d4T: an in vitro study in Caco-2 and Madin-Darby canine kidney cell monolayers.
    Siccardi D; Kandalaft LE; Gumbleton M; McGuigan C
    J Pharmacol Exp Ther; 2003 Dec; 307(3):1112-9. PubMed ID: 14557377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hormonal regulation of dipeptide transporter (PepT1) in Caco-2 cells with normal and anoxia/reoxygenation management.
    Sun BW; Zhao XC; Wang GJ; Li N; Li JS
    World J Gastroenterol; 2003 Apr; 9(4):808-12. PubMed ID: 12679938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function and immunolocalization of overexpressed human intestinal H+/peptide cotransporter in adenovirus-transduced Caco-2 cells.
    Hsu CP; Walter E; Merkle HP; Rothen-Rutishauser B; Wunderli-Allenspach H; Hilfinger JM; Amidon GL
    AAPS PharmSci; 1999; 1(3):E12. PubMed ID: 11741208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional expression of novel peptide transporter in renal basolateral membranes.
    Terada T; Sawada K; Ito T; Saito H; Hashimoto Y; Inui K
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F851-7. PubMed ID: 11053045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.